Expression and function of Kv7.4 channels in rat cardiac mitochondria: possible targets for cardioprotection
Plasmalemmal Kv7.1 (KCNQ1) channels are critical players in cardiac excitability; however, little is known on the functional role of additional Kv7 family members (Kv7.2-5) in cardiac cells. In this work, the expression, function, cellular and subcellular localization, and potential cardioprotective...
Saved in:
Published in | Cardiovascular research Vol. 110; no. 1; pp. 40 - 50 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Plasmalemmal Kv7.1 (KCNQ1) channels are critical players in cardiac excitability; however, little is known on the functional role of additional Kv7 family members (Kv7.2-5) in cardiac cells. In this work, the expression, function, cellular and subcellular localization, and potential cardioprotective role against anoxic-ischaemic cardiac injury of Kv7.4 channels have been investigated.
Expression of Kv7.1 and Kv7.4 transcripts was found in rat heart tissue by quantitative polymerase chain reaction. Western blots detected Kv7.4 subunits in mitochondria from Kv7.4-transfected cells, H9c2 cardiomyoblasts, freshly isolated adult cardiomyocytes, and whole hearts. Immunofluorescence experiments revealed that Kv7.4 subunits co-localized with mitochondrial markers in cardiac cells, with ∼ 30-40% of cardiac mitochondria being labelled by Kv7.4 antibodies, a result also confirmed by immunogold electron microscopy experiments. In isolated cardiac (but not liver) mitochondria, retigabine (1-30 µM) and flupirtine (30 µM), two selective Kv7 activators, increased Tl(+) influx, depolarized the membrane potential, and inhibited calcium uptake; all these effects were antagonized by the Kv7 blocker XE991. In intact H9c2 cells, reducing Kv7.4 expression by RNA interference blunted retigabine-induced mitochondrial membrane depolarization; in these cells, retigabine decreased mitochondrial Ca(2+) levels and increased radical oxygen species production, both effects prevented by XE991. Finally, retigabine reduced cellular damage in H9c2 cells exposed to anoxia/re-oxygenation and largely prevented the functional and morphological changes triggered by global ischaemia/reperfusion (I/R) in Langendorff-perfused rat hearts.
Kv7.4 channels are present and functional in cardiac mitochondria; their activation exerts a significant cardioprotective role, making them potential therapeutic targets against I/R-induced cardiac injury. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0008-6363 1755-3245 |
DOI: | 10.1093/cvr/cvv281 |