A Comparison of the Sensing Behavior for Pt-Mo/C-, Pt-Zr/C-, Pt-Fe-Ir/C-, and Pt/C-Modified Glassy Carbon Electrodes for the Oxidation of Ascorbic Acid and Dopamine

This study compares the sensing performance for platinum-molybdenum-, platinum-zirconium-, platinum-iron-iridium-, and platinum-modified electrodes in terms of the amperometric detection of ascorbic acid (AA) and dopamine (DA). The Pt, Pt-Mo, Pt-Zr, and Pt-Fe-Ir electrocatalysts are fabricated by ch...

Full description

Saved in:
Bibliographic Details
Published inCatalysts Vol. 13; no. 2; p. 337
Main Authors Weng, Yu-Ching, Su-Chen, Jia-Yi, Yang, Ting-Yu, Chiang, Chieh-Lin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study compares the sensing performance for platinum-molybdenum-, platinum-zirconium-, platinum-iron-iridium-, and platinum-modified electrodes in terms of the amperometric detection of ascorbic acid (AA) and dopamine (DA). The Pt, Pt-Mo, Pt-Zr, and Pt-Fe-Ir electrocatalysts are fabricated by chemical reduction on a carbon black support (XC-72) and are further modified on a glassy carbon electrode (GCE) as sensing electrodes. The Pt-Mo/C/GCE exhibits better electrocatalytic activity toward AA and DA than the Pt/C/GCE, Pt-Zr/C/GCE, and Pt-Fe-Ir/C/GCE. The Pt-Mo/C/GCE exhibits a sensitivity of 31.29 µA mM−1 to AA at 0.3 V vs. Ag/AgCl and a sensitivity of 72.24 µA mM−1 to DA at 0.6 V vs. Ag/AgCl and is reproducible and stable. This electrode has a respective limit of detection of 7.69 and 6.14 µM for AA and DA. Sucrose, citric acid, tartaric acid, and uric acid do not interfere with AA and DA detection. The diffusion coefficient and kinetic parameters, such as the catalytic rate constant and the heterogeneous rate constant for AA and DA, are determined using electrochemical approaches.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal13020337