Design Principles of a Symmetrically Coupled Inductor Structure for Multiphase Synchronous Buck Converters

The multiphase interleaved synchronous buck converters with coupled phase inductors are being preferred for voltage regulator modules requiring low output voltage, high output current, and fast transient response since they simultaneously offer better steady-state efficiency and faster dynamic respo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 58; no. 3; pp. 988 - 997
Main Authors Nagaraja, H N, Kastha, D, Petra, A
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The multiphase interleaved synchronous buck converters with coupled phase inductors are being preferred for voltage regulator modules requiring low output voltage, high output current, and fast transient response since they simultaneously offer better steady-state efficiency and faster dynamic response. In this paper, a novel magnetic core structure for symmetrical coupling of multiphase buck converter phase inductors is proposed, which overcomes several limitations of asymmetrical inductor coupling proposed so far. A new analytical technique to arrive at simple dynamic equivalent circuits of the converter, as well as design guidelines for the proposed inductor structure, is presented. Experimental results from a prototype four-phase synchronous buck converter with the proposed inductor demonstrate 2% to 6% improvement in the converter efficiency compared to a similarly rated converter with uncoupled inductors while retaining the same transient performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2010.2048830