StochasticNet: Forming Deep Neural Networks via Stochastic Connectivity

Deep neural networks are a branch in machine learning that has seen a meteoric rise in popularity due to its powerful abilities to represent and model high-level abstractions in highly complex data. One area in deep neural networks that are ripe for exploration is neural connectivity formation. A pi...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 4; pp. 1915 - 1924
Main Authors Shafiee, Mohammad Javad, Siva, Parthipan, Wong, Alexander
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Deep neural networks are a branch in machine learning that has seen a meteoric rise in popularity due to its powerful abilities to represent and model high-level abstractions in highly complex data. One area in deep neural networks that are ripe for exploration is neural connectivity formation. A pivotal study on the brain tissue of rats found that synaptic formation for specific functional connectivity in neocortical neural microcircuits can be surprisingly well modeled and predicted as a random formation. Motivated by this intriguing finding, we introduce the concept of StochasticNet where deep neural networks are formed via stochastic connectivity between neurons. As a result, any type of deep neural networks can be formed as a StochasticNet by allowing the neuron connectivity to be stochastic. Stochastic synaptic formations in a deep neural network architecture can allow for efficient utilization of neurons for performing specific tasks. To evaluate the feasibility of such a deep neural network architecture, we train a StochasticNet using four different image datasets (CIFAR-10, MNIST, SVHN, and STL-10). Experimental results show that a StochasticNet using less than half the number of neural connections as a conventional deep neural network achieves comparable accuracy and reduces overfitting on the CIFAR-10, MNIST, and SVHN data sets. Interestingly, StochasticNet with less than half the number of neural connections, achieved a higher accuracy (relative improvement in test error rate of ~6% compared to ConvNet) on the STL-10 data set than a conventional deep neural network. Finally, the StochasticNets have faster operational speeds while achieving better or similar accuracy performances.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2016.2551458