StochasticNet: Forming Deep Neural Networks via Stochastic Connectivity
Deep neural networks are a branch in machine learning that has seen a meteoric rise in popularity due to its powerful abilities to represent and model high-level abstractions in highly complex data. One area in deep neural networks that are ripe for exploration is neural connectivity formation. A pi...
Saved in:
Published in | IEEE access Vol. 4; pp. 1915 - 1924 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Deep neural networks are a branch in machine learning that has seen a meteoric rise in popularity due to its powerful abilities to represent and model high-level abstractions in highly complex data. One area in deep neural networks that are ripe for exploration is neural connectivity formation. A pivotal study on the brain tissue of rats found that synaptic formation for specific functional connectivity in neocortical neural microcircuits can be surprisingly well modeled and predicted as a random formation. Motivated by this intriguing finding, we introduce the concept of StochasticNet where deep neural networks are formed via stochastic connectivity between neurons. As a result, any type of deep neural networks can be formed as a StochasticNet by allowing the neuron connectivity to be stochastic. Stochastic synaptic formations in a deep neural network architecture can allow for efficient utilization of neurons for performing specific tasks. To evaluate the feasibility of such a deep neural network architecture, we train a StochasticNet using four different image datasets (CIFAR-10, MNIST, SVHN, and STL-10). Experimental results show that a StochasticNet using less than half the number of neural connections as a conventional deep neural network achieves comparable accuracy and reduces overfitting on the CIFAR-10, MNIST, and SVHN data sets. Interestingly, StochasticNet with less than half the number of neural connections, achieved a higher accuracy (relative improvement in test error rate of ~6% compared to ConvNet) on the STL-10 data set than a conventional deep neural network. Finally, the StochasticNets have faster operational speeds while achieving better or similar accuracy performances. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2016.2551458 |