The Geology, Petrography, and Geochemistry of Egyptian Dokhan Volcanics: A Potential Source for Construction Aggregate

The present paper focuses on the geology, petrography, and geochemistry of the well-known Dokhan volcanics encountered in the northern part of the Eastern Desert of Egypt. The basalts, andesites, rhyolites, and agglomerates exposed at the Makhar Seal (flood plain) as well as Wadi Abu Zoghot, Wadi El...

Full description

Saved in:
Bibliographic Details
Published inMinerals (Basel) Vol. 13; no. 5; p. 635
Main Authors El-Desoky, Hatem, Abd El-Hafez, Nabil, Khalil, Ahmed, Arafat, Ahmed, Hasan, Mahmoud Galal, Youssef, Tarik
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 02.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present paper focuses on the geology, petrography, and geochemistry of the well-known Dokhan volcanics encountered in the northern part of the Eastern Desert of Egypt. The basalts, andesites, rhyolites, and agglomerates exposed at the Makhar Seal (flood plain) as well as Wadi Abu Zoghot, Wadi El-Ghafiryia, Wadi Al-Radah Luman, Wadi Al-Ushsh, Wadi Umm Sidrah, and Gabal Ghuwayrib are herein examined as sources of coarse aggregate in concrete mixes. A representative total of 28 samples—collected from different Dokhan volcanics—was studied in terms of field geology, petrography, and geochemistry wherein a variety of experiments related to construction material validation apply. The petrographic examination revealed that the studied Dokhan volcanics consist of basic, intermediate, and acidic volcanic igneous rocks. These rocks are represented through basalts, andesites, imperial porphyry, dacites, rhyodacites, rhyolites, and their pyroclastics. Furthermore, the applied geochemical analysis indicated that the studied Dokhan volcanics are alkaline to sub-alkaline, calc-alkaline and classified as basalts, basaltic andesites, andesites, trachyandesites, trachydacites, trachytes, and rhyolites, indicating an initial potential as aggregate for concrete mixes. Finally, the results obtained from incorporating Dokhan volcanics as aggregates in concrete mixes demonstrated a significant improvement in regard to the properties of the comprising concrete mixes. Herein, a higher compressive strength was witnessed after 28 days for Dokhan volcanic concrete, when compared to concrete comprising dolomite aggregate, amounting to an average increase that exceeded 36%.
ISSN:2075-163X
2075-163X
DOI:10.3390/min13050635