A Flexible and Stretchable Self-Powered Nanogenerator in Basketball Passing Technology Monitoring
The rapid development of the fifth generation technology poses more challenges in the human motion inspection field. In this study, a nanogenerator, made by PVDF, ionic hydrogel, and PDMS, is used. Furthermore, a transparent, stretchable, and biocompatible PENG (TSB-PENG) is presented, which can be...
Saved in:
Published in | Electronics (Basel) Vol. 10; no. 21; p. 2584 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The rapid development of the fifth generation technology poses more challenges in the human motion inspection field. In this study, a nanogenerator, made by PVDF, ionic hydrogel, and PDMS, is used. Furthermore, a transparent, stretchable, and biocompatible PENG (TSB-PENG) is presented, which can be used as a self-powered sensor attached to the athlete’s joints, which helps to monitor the training and improve the subject’s performance. This device shows the ability to maintain a relatively stable output, under various external environments (e.g., inorganic salt, organic matter and temperature). Additionally, TSB-PENG can supply power to small-scale electronic equipment, such as Bluetooth transmitting motion data in real time. This study can provide a new approach to designing lossless, real-time, portable, and durable self-powered sensors in the sports motoring field. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics10212584 |