Testability Evaluation in Time-Variant Circuits: A New Graphical Method

DC–DC converter fault diagnosis, executed via neural networks built by exploiting the information deriving from testability analysis, is the subject of this paper. The networks under consideration are complex valued neural networks (CVNNs), whose fundamental feature is the proper treatment of the ph...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 11; no. 10; p. 1589
Main Authors Bindi, Marco, Piccirilli, Maria Cristina, Luchetta, Antonio, Grasso, Francesco, Manetti, Stefano
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2022
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics11101589

Cover

Abstract DC–DC converter fault diagnosis, executed via neural networks built by exploiting the information deriving from testability analysis, is the subject of this paper. The networks under consideration are complex valued neural networks (CVNNs), whose fundamental feature is the proper treatment of the phase and the information contained in it. In particular, a multilayer neural network based on multi-valued neurons (MLMVN) is considered. In order to effectively design the network, testability analysis is exploited. Two possible ways for executing this analysis on DC–DC converters are proposed, taking into account the single-fault hypothesis. The theoretical foundations and some applicative examples are presented. Computer programs, based on symbolic analysis techniques, are used for both the testability analysis and the neural network training phase. The obtained results are very satisfactory and demonstrate the optimal performances of the method.
AbstractList DC–DC converter fault diagnosis, executed via neural networks built by exploiting the information deriving from testability analysis, is the subject of this paper. The networks under consideration are complex valued neural networks (CVNNs), whose fundamental feature is the proper treatment of the phase and the information contained in it. In particular, a multilayer neural network based on multi-valued neurons (MLMVN) is considered. In order to effectively design the network, testability analysis is exploited. Two possible ways for executing this analysis on DC–DC converters are proposed, taking into account the single-fault hypothesis. The theoretical foundations and some applicative examples are presented. Computer programs, based on symbolic analysis techniques, are used for both the testability analysis and the neural network training phase. The obtained results are very satisfactory and demonstrate the optimal performances of the method.
Author Grasso, Francesco
Manetti, Stefano
Piccirilli, Maria Cristina
Luchetta, Antonio
Bindi, Marco
Author_xml – sequence: 1
  givenname: Marco
  orcidid: 0000-0001-9749-602X
  surname: Bindi
  fullname: Bindi, Marco
– sequence: 2
  givenname: Maria Cristina
  orcidid: 0000-0002-9955-1990
  surname: Piccirilli
  fullname: Piccirilli, Maria Cristina
– sequence: 3
  givenname: Antonio
  orcidid: 0000-0003-4319-1495
  surname: Luchetta
  fullname: Luchetta, Antonio
– sequence: 4
  givenname: Francesco
  orcidid: 0000-0002-8697-2091
  surname: Grasso
  fullname: Grasso, Francesco
– sequence: 5
  givenname: Stefano
  orcidid: 0000-0002-5798-7147
  surname: Manetti
  fullname: Manetti, Stefano
BookMark eNp9kDFPwzAQhS0EEqX0F7BYYg7Yvqax2aqqFKQCS2GNLo6jukrtYjug_nsCZUAIccvd8L67d--MHDvvDCEXnF0BKHZtWqNT8M7qyDlnPJfqiAwEK1SmhBLHP-ZTMopxw_pSHCSwAVmsTExY2damPZ2_Ydthst5R6-jKbk32gsGiS3Rmg-5sijd0Sh_NO10E3K2txpY-mLT29Tk5abCNZvTdh-T5dr6a3WXLp8X9bLrMNAiRMtmYvFYCKinBmKoaN1LwhkmcgBE8LxQUtWZcVUbWLNccUIpaj1HlHGqEMQzJ5WHvLvjXrvdebnwXXH-yFJOCcSikKHqVOqh08DEG05Tapq_HUkDblpyVn9GVf0TXs_CL3QW7xbD_l_oA1Mt3bw
CitedBy_id crossref_primary_10_3390_electronics11132008
crossref_primary_10_3390_electronics13040684
crossref_primary_10_1007_s00034_024_02722_1
crossref_primary_10_1016_j_measurement_2023_113061
crossref_primary_10_3390_s22145323
Cites_doi 10.1109/TIM.2007.904549
10.1109/IECON.2016.7793204
10.1007/s00500-011-0755-7
10.1002/cae.21671
10.1109/81.774222
10.25046/aj060132
10.1109/EEEIC.2015.7165261
10.1109/EEEIC.2015.7165263
10.1109/TCSI.2016.2645079
10.1109/TII.2013.2264290
10.1109/SM2ACD.2010.5672314
10.1109/19.39034
10.1109/RTSI.2019.8895583
10.1002/cta.2164
10.1049/iet-pel.2016.0390
10.1049/iet-epa:20060329
10.1109/TIM.2002.1017726
10.1002/(SICI)1097-007X(199809/10)26:5<439::AID-CTA23>3.0.CO;2-6
10.1109/SMACD.2015.7301682
10.1109/IECON.2016.7793030
10.1109/TNNLS.2014.2301802
10.1109/TIE.2017.2740847
10.1109/TIM.2016.2581438
10.1109/RTSI.2019.8895579
10.1109/63.931052
10.1002/jnm.2618
10.1109/EEEIC.2015.7165262
10.1109/TCS.1981.1084928
10.1109/SMACD.2018.8434864
10.1109/TIM.1987.6312710
10.1007/978-3-642-20353-4
10.1109/TCT.1962.1086882
10.1007/s00521-004-0423-2
10.1109/TAC.1983.1103302
10.1109/TCS.1979.1084659
10.1109/TIM.2018.2847978
10.1109/TCS.1981.1084927
10.1109/TCS.1979.1084658
10.1109/CDC.1981.269376
10.1109/TIE.2013.2262748
10.1109/TII.2014.2322580
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics11101589
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics11101589
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c322t-8fe5d923b883eebb4f821f08a63e2157937dc019be8d05c13a82dc4a9513da343
IEDL.DBID 8FG
ISSN 2079-9292
IngestDate Mon Jul 14 08:15:49 EDT 2025
Tue Jul 01 01:47:27 EDT 2025
Thu Apr 24 23:00:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-8fe5d923b883eebb4f821f08a63e2157937dc019be8d05c13a82dc4a9513da343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5798-7147
0000-0001-9749-602X
0000-0003-4319-1495
0000-0002-9955-1990
0000-0002-8697-2091
OpenAccessLink https://www.proquest.com/docview/2670137827?pq-origsite=%requestingapplication%
PQID 2670137827
PQPubID 2032404
ParticipantIDs proquest_journals_2670137827
crossref_citationtrail_10_3390_electronics11101589
crossref_primary_10_3390_electronics11101589
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Priester (ref_21) 1981; C-30
Arya (ref_1) 2014; 10
ref_14
Grasso (ref_39) 2016; 24
Cannas (ref_7) 2004; 13
ref_51
Grasso (ref_38) 2019; 32
ref_18
Babaei (ref_52) 2014; 61
Fedi (ref_6) 1999; 46
Aminian (ref_11) 2002; 51
Sun (ref_42) 2001; 16
ref_23
Saini (ref_31) 2018; 65
ref_20
Fontana (ref_25) 2016; 44
Fontana (ref_26) 2017; 64
ref_27
Stenbakken (ref_22) 1987; IM-36
Piccirilli (ref_41) 2021; 6
Aminian (ref_10) 2000; 47
Visvanathan (ref_28) 1981; 28
Ayachit (ref_32) 2017; 10
Sen (ref_24) 1979; 26
ref_36
Spina (ref_9) 1997; 44
ref_35
ref_34
ref_33
ref_30
Lin (ref_19) 1983; 28
Stenbakken (ref_15) 1989; 38
ref_37
Qasim (ref_2) 2014; 10
Berkowitz (ref_13) 1962; 9
Huang (ref_17) 1998; 26
Aizenberg (ref_49) 2012; 16
Aminian (ref_12) 2007; 56
Saeks (ref_29) 1981; 28
ref_47
Navid (ref_16) 1979; 26
ref_46
ref_44
ref_43
Luchetta (ref_3) 2019; 68
ref_40
Aizenberg (ref_50) 2014; 25
Davoudi (ref_45) 2007; 1
ref_48
ref_8
Fontana (ref_5) 2016; 65
ref_4
References_xml – volume: 56
  start-page: 1546
  year: 2007
  ident: ref_12
  article-title: A modular fault-diagnosis system for analog electronic circuits using neural networks with wavelet transform as a processor
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2007.904549
– ident: ref_47
  doi: 10.1109/IECON.2016.7793204
– volume: 16
  start-page: 563
  year: 2012
  ident: ref_49
  article-title: A modified learning algorithm for the multilayer neural network with multi-valued neurons based on the complex QR decomposition
  publication-title: Soft Comput.
  doi: 10.1007/s00500-011-0755-7
– ident: ref_51
– volume: 24
  start-page: 44
  year: 2016
  ident: ref_39
  article-title: SapWin4.0—A new simulation program for electrical engineering education using symbolic analysis
  publication-title: Comput. Appl. Eng. Educ.
  doi: 10.1002/cae.21671
– volume: 46
  start-page: 779
  year: 1999
  ident: ref_6
  article-title: Determination of an optimum set of testable components in the fault diagnosis of analog linear circuits
  publication-title: IEEE Trans. Circuits Syst.—Part I
  doi: 10.1109/81.774222
– volume: 6
  start-page: 275
  year: 2021
  ident: ref_41
  article-title: Simulation of Pulse Width Modulation DC-DC Converters Through Symbolic Analysis Techniques
  publication-title: Adv. Sci. Technol. Eng. Syst. J.
  doi: 10.25046/aj060132
– ident: ref_33
  doi: 10.1109/EEEIC.2015.7165261
– ident: ref_44
  doi: 10.1109/EEEIC.2015.7165263
– ident: ref_35
– volume: 64
  start-page: 1564
  year: 2017
  ident: ref_26
  article-title: A fast algorithm for testability analysis in large linear time invariant networks
  publication-title: IEEE Trans. Circ. Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2016.2645079
– ident: ref_23
– volume: 10
  start-page: 569
  year: 2014
  ident: ref_1
  article-title: Neural network based conductance estimation control algorithm for shunt compensation
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2013.2264290
– ident: ref_8
  doi: 10.1109/SM2ACD.2010.5672314
– volume: 38
  start-page: 941
  year: 1989
  ident: ref_15
  article-title: Ambiguity groups and testability
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.39034
– ident: ref_4
  doi: 10.1109/RTSI.2019.8895583
– volume: 44
  start-page: 1308
  year: 2016
  ident: ref_25
  article-title: An unconditionally sound algorithm for testability analysis in linear time-invariant electrical networks
  publication-title: Int. J. Circ. Theor. Appl.
  doi: 10.1002/cta.2164
– volume: 10
  start-page: 451
  year: 2017
  ident: ref_32
  article-title: Magnetising Inductance of Multiple-Output Flyback DC-DC Convertor for Discontinuous- Conduction Mode
  publication-title: IET Power Electron.
  doi: 10.1049/iet-pel.2016.0390
– volume: 47
  start-page: 151
  year: 2000
  ident: ref_10
  article-title: Neural network based analog-circuit fault diagnosis using wavelet transform as preprocessor
  publication-title: IEEE Trans. Circuits Syst.—Part II
– volume: C-30
  start-page: 884
  year: 1981
  ident: ref_21
  article-title: New measures of testability and test complexity for linear analog failure analysis
  publication-title: IEEE Trans. Circuits Syst.
– volume: 1
  start-page: 402
  year: 2007
  ident: ref_45
  article-title: Averaged modelling of switched-inductor cells considering conduction losses in discontinuous mode
  publication-title: IET Electr. Power Appl.
  doi: 10.1049/iet-epa:20060329
– volume: 51
  start-page: 544
  year: 2002
  ident: ref_11
  article-title: Analog fault diagnosis of actual circuits using neural networks
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2002.1017726
– ident: ref_20
– volume: 26
  start-page: 439
  year: 1998
  ident: ref_17
  article-title: Diagnosability analysis of analogue circuits
  publication-title: Int. J. Circuit Theory Appl.
  doi: 10.1002/(SICI)1097-007X(199809/10)26:5<439::AID-CTA23>3.0.CO;2-6
– ident: ref_30
– ident: ref_37
  doi: 10.1109/SMACD.2015.7301682
– ident: ref_34
  doi: 10.1109/IECON.2016.7793030
– volume: 25
  start-page: 1632
  year: 2014
  ident: ref_50
  article-title: MLMVN With Soft Margins Learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2301802
– volume: 65
  start-page: 2234
  year: 2018
  ident: ref_31
  article-title: Analysis and Design of Choke Inductors for Switched-Mode Power Inverters
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2740847
– volume: 65
  start-page: 2321
  year: 2016
  ident: ref_5
  article-title: A Testability measure for DC-excited periodically switched networks with applications to DC-DC converters
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2581438
– ident: ref_40
  doi: 10.1109/RTSI.2019.8895579
– volume: 16
  start-page: 482
  year: 2001
  ident: ref_42
  article-title: Averaged modeling of PWM converters operating in discontinuous conduction mode
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/63.931052
– ident: ref_14
– volume: 32
  start-page: e2618
  year: 2019
  ident: ref_38
  article-title: A Laplace transform approach to the simulation of DC-DC converters
  publication-title: Int. J. Numer. Model.
  doi: 10.1002/jnm.2618
– ident: ref_43
  doi: 10.1109/EEEIC.2015.7165262
– volume: 28
  start-page: 1103
  year: 1981
  ident: ref_29
  article-title: Diagnosability of nonlinear circuits and systems—Part II: Dynamical systems
  publication-title: IEEE Trans. Circuits Syst.
  doi: 10.1109/TCS.1981.1084928
– ident: ref_27
  doi: 10.1109/SMACD.2018.8434864
– volume: IM-36
  start-page: 406
  year: 1987
  ident: ref_22
  article-title: Test-point selection and testability measures via QR factorization of linear models
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.1987.6312710
– ident: ref_48
  doi: 10.1007/978-3-642-20353-4
– volume: 9
  start-page: 24
  year: 1962
  ident: ref_13
  article-title: Conditions for network-element-value solvability
  publication-title: IRE Trans. Circuit Theory
  doi: 10.1109/TCT.1962.1086882
– volume: 13
  start-page: 288
  year: 2004
  ident: ref_7
  article-title: Neural network-based analog fault diagnosis using testability analysis
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-004-0423-2
– ident: ref_46
– volume: 28
  start-page: 689
  year: 1983
  ident: ref_19
  article-title: Topological conditions for singlebranch-fault
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1983.1103302
– volume: 26
  start-page: 457
  year: 1979
  ident: ref_24
  article-title: Fault diagnosis for linear systems via multifrequency measurements
  publication-title: IEEE Trans. Circuits Syst.
  doi: 10.1109/TCS.1979.1084659
– volume: 68
  start-page: 439
  year: 2019
  ident: ref_3
  article-title: MLMVNNN for Parameter Fault Detection in PWM DC–DC Converters and Its Applications for Buck and Boost DC–DC Converters
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2847978
– volume: 44
  start-page: 188
  year: 1997
  ident: ref_9
  article-title: Linear circuit fault diagnosis using neuromorphic analyzers
  publication-title: IEEE Trans. Circuits Syst.—Part II
– volume: 28
  start-page: 1093
  year: 1981
  ident: ref_28
  article-title: Diagnosability of nonlinear circuits and systems—Part I: The dc case
  publication-title: IEEE Trans. Circuits Syst.
  doi: 10.1109/TCS.1981.1084927
– volume: 26
  start-page: 440
  year: 1979
  ident: ref_16
  article-title: A theory and an algorithm for analog circuit fault diagnosis
  publication-title: IEEE Trans. Circuits Syst.
  doi: 10.1109/TCS.1979.1084658
– ident: ref_18
  doi: 10.1109/CDC.1981.269376
– ident: ref_36
– volume: 61
  start-page: 1213
  year: 2014
  ident: ref_52
  article-title: Calculation of Output Voltage Ripple and Design Considerations of SEPIC Converter
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2262748
– volume: 10
  start-page: 1765
  year: 2014
  ident: ref_2
  article-title: Application of artificial neural networks for shunt active power filter control
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2014.2322580
SSID ssj0000913830
Score 2.251583
Snippet DC–DC converter fault diagnosis, executed via neural networks built by exploiting the information deriving from testability analysis, is the subject of this...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1589
SubjectTerms Circuits
Control algorithms
Diagnostic tests
Fault diagnosis
Graphical methods
Hypotheses
Multilayers
Neural networks
Software
Testability
Voltage converters (DC to DC)
Title Testability Evaluation in Time-Variant Circuits: A New Graphical Method
URI https://www.proquest.com/docview/2670137827
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4oXPRgfEYUyR482gC7bdl6MYg8YoQYBeOt2W63CYkpSMvBf-9MWx4mhtMeunuZ2Xl29vsAbj3uKIJpsyKacLVt7VmeQbtyAiFdrUxTBdQaGI7cwcR-_nQ-i4ZbUoxVrnxi5qjDmaYeeZ27LULHk7z1MP-2iDWK_q4WFBr7UG5ipKF7Lnv9dY-FMC-laORgQwKr-_qGWyZBI8dQSPTu2wHprz_OgkzvGI6K7JC1c3WewJ6JT-FwCzPwDPpjPJeDa_-w7hqrm01jRs85rA8sflFarDNd6OU0Te5Zm6EnY31CpiaNsGFGGn0Ok1533BlYBRuCpdHoUktGxgkxHQukFMYEgR1J3owaUrnCYNwmnLtQY8IWGBk2HN0USvJQ2wpTKBEqYYsLKMWz2FwCsx1ShPRcGiH1pJYm0kZxVwnNW6FxKsBXIvF1ARVOjBVfPpYMJEf_HzlW4G59aJ4jZezeXl3J2i_MJvE3Sr7a_fkaDji9Q8gmD6tQShdLc4PZQRrUsitQg3L7afjyjutjd_T69gs8n74x
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHtSD8RnxuQe92QC7bdmaGKPIS4EYA4Zb3W63CYkBFYzxT_kbnaEtYGK4eW63h9lv57Gd-T6AU487imjarIg6XG1be5Zn8Fw5gZCuVqaoAroaaLXdete-6zm9DHynszDUVpn6xImjDoea7sjz3C0RO57kpavXN4tUo-jvaiqhEcPi3nx9Ysk2umzc4v6ecV6tdMp1K1EVsDSCd2zJyDghpjWBlMKYILAjyYtRQSpXGIx_xBcXakx8AiPDgqOLQkkealthKiJCJWyB312CZZsmWrOwfFNpPzxOb3WIZVOKQkxvJIRXyM_UbEboVjD4kqD8fAj8HQEmYa26AetJPsquYwBtQsYMtmBtjqVwG2odXBfTeX-xypQdnPUHjAZIrCcst3F_WLn_rj_649EFu2boO1mNuLAJA6w1kanege6_WGoXsoPhwOwBsx3aeum51LTqSS1NpI3irhKal0Lj5ICnJvF1Qk5OGhkvPhYpZEf_Dzvm4Hy66DXm5lj8-mFqaz85qCN_Bqv9xY9PYKXeaTX9ZqN9fwCrnKYgJn2Ph5Adv3-YI8xNxsFxAggGz_-NwR-9DPkU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4oJkYPxmdEUfegNxtgty1bE2OI8lCUeADDrW6324TEAArG8Nf8dc70gZgYbpzb7WH223lsZ74P4NzjjiKaNiuiDlfb1p7lGTxXTiCkq5Upq4CuBp7abrNrP_Sc3gp8Z7Mw1FaZ-cTYUYdDTXfkRe5WiB1PYqkepW0Rz3f1m9G7RQpS9Kc1k9NIINIy0y8s38bX93e41xec12ud26aVKgxYGoE8sWRknBBTnEBKYUwQ2JHk5agklSsMxkLijgs1JkGBkWHJ0WWhJA-1rTAtEaEStsDvrsJaRVQ8KvxkvTG73yG-TSlKCdGREF6p-KtrM0YHg2GYpOXng-HfWBAHuPo2bKWZKasmUNqBFTPYhc05vsI9aHRwXULsPWW1GU846w8YjZJYL1h4406x2_6H_uxPxlesytCLsgaxYhMa2FMsWL0P3aXY6QByg-HAHAKzHQKB9FxqX_WklibSRnFXCc0roXHywDOT-DqlKSe1jDcfyxWyo_-PHfNwOVs0Slg6Fr9eyGztp0d27P8C7Gjx4zNYR-T5j_ft1jFscBqHiBsgC5CbfHyaE0xSJsFpjAYGr8uG3w-cF_vk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testability+Evaluation+in+Time-Variant+Circuits%3A+A+New+Graphical+Method&rft.jtitle=Electronics+%28Basel%29&rft.au=Bindi%2C+Marco&rft.au=Piccirilli%2C+Maria+Cristina&rft.au=Luchetta%2C+Antonio&rft.au=Grasso%2C+Francesco&rft.date=2022-05-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=11&rft.issue=10&rft.spage=1589&rft_id=info:doi/10.3390%2Felectronics11101589&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon