Physics-Informed Masked Autoencoder for active sparse imaging

Imaging technology based on detecting individual photons has seen tremendous progress in recent years, with broad applications in autonomous driving, biomedical imaging, astronomical observation, and more. Comparing with conventional methods, however, it takes much longer time and relies on sparse a...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 20078 - 8
Main Authors McEvoy, Luke, Tafone, Daniel, Sua, Yong Meng, Huang, Yuping
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 29.08.2024
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Imaging technology based on detecting individual photons has seen tremendous progress in recent years, with broad applications in autonomous driving, biomedical imaging, astronomical observation, and more. Comparing with conventional methods, however, it takes much longer time and relies on sparse and noisy photon-counting data to form an image. Here we introduce Physics-Informed Masked Autoencoder (PI-MAE) as a fast and efficient approach for data acquisition and image reconstruction through hardware implementation of the MAE (Masked Autoencoder). We examine its performance on a single-photon LiDAR system when trained on digitally masked MNIST data. Our results show that, with or less detected photons per pulse and down to 9 detected photons per pixel, it achieves high-quality image reconstruction on unseen object classes with 90% physical masking. Our results highlight PI-MAE as a viable hardware accelerator for significantly improving the performance of single-photon imaging systems in photon-starving applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-71095-x