Usability and Security Testing of Online Links: A Framework for Click-Through Rate Prediction Using Deep Learning

The user, usage, and usability (3U’s) are three principal constituents for cyber security. The effective analysis of the 3U data using artificial intelligence (AI) techniques allows to deduce valuable observations, which allow domain experts to design practical strategies to alleviate cyberattacks a...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 11; no. 3; p. 400
Main Authors Damaševičius, Robertas, Zailskaitė-Jakštė, Ligita
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The user, usage, and usability (3U’s) are three principal constituents for cyber security. The effective analysis of the 3U data using artificial intelligence (AI) techniques allows to deduce valuable observations, which allow domain experts to design practical strategies to alleviate cyberattacks and ensure decision support. Many internet applications, such as internet advertising and recommendation systems, rely on click-through rate (CTR) prediction to anticipate the possibility that a user would click on an ad or product, which is key for understanding human online behaviour. However, online systems are prone to click on fraud attacks. We propose a Human-Centric Cyber Security (HCCS) model that additionally includes AI techniques targeted at the key elements of user, usage, and usability. As a case study, we analyse a CTR prediction task, using deep learning methods (factorization machines) to predict online fraud through clickbait. The results of experiments on a real-world benchmark Avazu dataset show that the proposed approach outpaces (AUC is 0.8062) other CTR forecasting approaches, demonstrating the viability of the proposed framework.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11030400