Convolutional Transformer-Based Cross Subject Model for SSVEP-Based BCI Classification

Steady-state visual evoked potential (SSVEP) is a commonly used brain-computer interface (BCI) paradigm. The performance of cross-subject SSVEP classification has a strong impact on SSVEP-BCI. This study designed a cross subject generalization SSVEP classification model based on an improved transfor...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 28; no. 11; pp. 6581 - 6593
Main Authors Liu, Jiawei, Wang, Ruimin, Yang, Yuankui, Zong, Yuan, Leng, Yue, Zheng, Wenming, Ge, Sheng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Steady-state visual evoked potential (SSVEP) is a commonly used brain-computer interface (BCI) paradigm. The performance of cross-subject SSVEP classification has a strong impact on SSVEP-BCI. This study designed a cross subject generalization SSVEP classification model based on an improved transformer structure that uses domain generalization (DG). The global receptive field of multi-head self-attention is used to learn the global generalized SSVEP temporal information across subjects. This is combined with a parallel local convolution module, designed to avoid oversmoothing the oscillation characteristics of temporal SSVEP data and better fit the feature. Moreover, to improve the cross-subject calibration-free SSVEP classification performance, an DG method named StableNet is combined with the proposed convolutional transformer structure to form the DG-Conformer method, which can eliminate spurious correlations between SSVEP discriminative information and background noise to improve cross-subject generalization. Experiments on two public datasets, Benchmark and BETA, demonstrated the outstanding performance of the proposed DG-Conformer compared with other calibration-free methods, FBCCA, tt-CCA, Compact-CNN, FB-tCNN, and SSVEPNet. Additionally, DG-Conformer outperforms the classic calibration-required algorithms eCCA, eTRCA and eSSCOR when calibration is used. An incomplete partial stimulus calibration scheme was also explored on the Benchmark dataset, and it was demonstrated to be a potential solution for further high-performance personalized SSVEP-BCI with quick calibration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2024.3454158