The role of excitatory amino acids in hypothermic injury to mammalian spinal cord neurons

Hypothermia has been reported to be beneficial in CNS physical injury and ischemia. We previously reported that posttraumatic cooling to 17 degrees C for 2 h increased survival of mouse spinal cord (SC) neurons subjected to physical injury (dendrite transection) but that cooling below 17 degrees C c...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurotrauma Vol. 13; no. 12; p. 809
Main Authors Craenen, G, Jeftinija, S, Grants, I, Lucas, J H
Format Journal Article
LanguageEnglish
Published United States 01.12.1996
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Hypothermia has been reported to be beneficial in CNS physical injury and ischemia. We previously reported that posttraumatic cooling to 17 degrees C for 2 h increased survival of mouse spinal cord (SC) neurons subjected to physical injury (dendrite transection) but that cooling below 17 degrees C caused a lethal NMDA receptor-linked stress to both lesioned and uninjured neurons. The present study tested whether cooling below 17 degrees C increases extracellular levels of excitatory amino acids (EAA). SC cultures were placed at 10 degrees C or 37 degrees C. Glutamate (Glu) and aspartate (Asp) levels were higher in the medium of the cooled cultures after 0.5 h (23 +/- 4 nM/microgram vs. 4 +/- 1 nM/microgram and 4 +/- 1 nM/microgram vs. 1 +/- 0 nM/microgram, respectively). The concentration of each EAA then declined and reached a plateau at 2-4 h that was still significantly higher than control levels (p < 0.0001, two-factor ANOVA, three cultures per group). Other amino acids (glycine, asparagine, glutamine, serine) showed an opposite pattern, with higher levels in the 37 degrees C group. Both NMDA and non-NMDA antagonists prevented the lethal cold injury. Survival of SC neurons cooled at 10 degrees C for 2 h and rewarmed for 22 h was 58% +/- 25% in the control group, 94% +/- 5% in the CNQX-treated group, 97% +/- 5% in the DAPV-treated group, and 99% +/- 2% in the group treated with both antagonists [p < 0.0006, one factor ANOVA, five cultures (> 120 neurons) per group]. These results show that death of neurons cooled to 10 degrees C is caused by elevated extracellular Glu and Asp and requires activation of both the NMDA and non-NMDA receptor subtypes.
ISSN:0897-7151
DOI:10.1089/neu.1996.13.809