Thermal properties of doubly reinforced fiberglass/epoxy composites with graphene nanoplatelets, graphene oxide and reduced-graphene oxide
A novel manufacturing method based on Vacuum Assisted Resin Transfer Molding (VARTM) was devised to incorporate carbon nanoparticles for the enhancement of thermal properties of multiscale laminates. Several graphene-based nanomaterials including graphene oxide (GO), reduced graphene oxide (rGO), gr...
Saved in:
Published in | Composites. Part B, Engineering Vol. 164; pp. 1 - 9 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A novel manufacturing method based on Vacuum Assisted Resin Transfer Molding (VARTM) was devised to incorporate carbon nanoparticles for the enhancement of thermal properties of multiscale laminates. Several graphene-based nanomaterials including graphene oxide (GO), reduced graphene oxide (rGO), graphene nanoplatelets (GNPs) and multi-walled carbon nanotubes (MWCNTs) were used to modify the epoxy matrix and the surface of glass fibers. The thermal, rheological and morphological properties of the resulting glass fiber-reinforced multiscale composites were investigated. The thermal properties of the epoxy/nanoparticle composites were studied through thermal conductivity measurements, differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). The thermal characterization results showed that the introduction of GNPs, GO, rGO, and MWCNTs enhanced thermal conductivity. Compared with the neat epoxy/fiberglass composite control results, improvement in thermal conductivity of fiberglass/epoxy modified with MWCNTs 0.3%, GNPs 1%, GO 2% and rGO 0.042% were 8.8%, 12.6%, 8.2% and 4.1%, respectively. It was concluded that for the same volume fraction of nanoparticles, the thermal conductivity improvement in graphene nanoplatelets-modified composites is more pronounced compared with other nanoparticles. A better dispersion of nanoparticles and a better interfacial interaction between nanoparticles and epoxy are essential in enhancing the thermal conductivity of nanocomposite materials. |
---|---|
ISSN: | 1359-8368 1879-1069 |
DOI: | 10.1016/j.compositesb.2018.11.051 |