Self assembled block copolymer gate insulators with cylindrical nanostructures for pentacene thin film transistor

This study examined the effect of a chemically nanostructured surface of cylinder forming poly(styrene b -methyl methacrylate) (PS- b -PMMA) and poly(styrene- b -4vinyl pyridine) (PS- b -P4VP) block copolymer gate dielectrics on the performance of the bottom gate pentacene organic thin film transist...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular research Vol. 18; no. 8; pp. 777 - 786
Main Authors Jo, Pil Sung, Park, Youn Jung, Kang, Seok Ju, Kim, Tae Hee, Park, Cheolmin, Kim, Eunhye, Ryu, Du Yeol, Kim, Ho-Cheol
Format Journal Article
LanguageEnglish
Published Heidelberg The Polymer Society of Korea 01.08.2010
한국고분자학회
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study examined the effect of a chemically nanostructured surface of cylinder forming poly(styrene b -methyl methacrylate) (PS- b -PMMA) and poly(styrene- b -4vinyl pyridine) (PS- b -P4VP) block copolymer gate dielectrics on the performance of the bottom gate pentacene organic thin film transistor (OTFT). The field effect mobility of pentacene is affected mainly by the chemical properties of the top skin of a block copolymer layer. In the case of PS- b -PMMA with cylindrical PMMA microdomains that are located very closely at the block copolymer-pentacene interface because the surface energy of PMMA is similar to that of PS, the field effect mobility in general corresponds to the area averaged value of the two mobilities with the pure PS and PMMA layer. On the other hand, PS- b -P4VP copolymer results in a similar field effect mobility to that of the pure PS layer because the cylindrical P4VP microdomains are embedded in the PS matrix of which the surface energy is much lower than that of P4VP. The orientation of the cylindrical PMMA microdomains with respect to the surface also affects the field effect mobility, where the PMMA microdomains are aligned perpendicular to the surface, gave rise to a mobility approximately 50% higher than those parallel to the surface. The composite model with parallel and series resistance units offers qualitative understanding of these results.
Bibliography:G704-000117.2010.18.8.003
http://www.cheric.org/article/849054
ISSN:1598-5032
2092-7673
DOI:10.1007/s13233-010-0805-5