Levitation Performance Study of Bulk HTSC over Monopole PMG Consider Different Cross-Section Configuration with 3D-Modeling Numerical Method

Magnetic levitation force of bulk high temperature superconductors (HTSCs) above monopole permanent magnet guideway (PMG) is simulated using finite element method (FEM). The models are formulated by H-formulation and resolving codes is developed using Finite Element Program Generator (FEPG). The E –...

Full description

Saved in:
Bibliographic Details
Published inJournal of low temperature physics Vol. 173; no. 1-2; pp. 45 - 53
Main Authors Lu, Yiyun, Dang, Qiaohong, Liu, Minxian
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.10.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Magnetic levitation force of bulk high temperature superconductors (HTSCs) above monopole permanent magnet guideway (PMG) is simulated using finite element method (FEM). The models are formulated by H-formulation and resolving codes is developed using Finite Element Program Generator (FEPG). The E – J power law is used to describe the electrical field vs. current density nonlinear characteristic of HTSC. By the method, the levitation performance is studied consider different cross-section configure of the monopole PMG. The simulation results show that the maximum levitation force (MLF) of the bulk HTSC will increase when the height/width of the PMG rises while fixing the width/height of the monopole PMG cross-section. The increasing trends to slow when the absolute differential value of the height and the width of the PMG cross-section become larger and larger. For a certain cross-section area of the monopole PMG, the economical levitation cost may be achieved while the ratio of height to width of the cross-section changes between 0.475 and 0.525.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0022-2291
1573-7357
DOI:10.1007/s10909-013-0875-9