Cloud-Enabled Reconfiguration of Electrical/Electronic Architectures for Modular Electric Vehicles
Modern mobility faces increasing challenges, like carbon-free transportation and the need for flexible transportation solutions. The U-Shift II project addresses these problems through a modular electric vehicle architecture, a drive unit (Driveboard) and a vehicle body (Capsule). This separation of...
Saved in:
Published in | World electric vehicle journal Vol. 16; no. 2; p. 111 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Modern mobility faces increasing challenges, like carbon-free transportation and the need for flexible transportation solutions. The U-Shift II project addresses these problems through a modular electric vehicle architecture, a drive unit (Driveboard) and a vehicle body (Capsule). This separation offers high flexibility in different use cases. Current architecture paradigms, like AUTOSAR, face limitations in cost and development speed. To address these issues, this paper introduces a hybrid software architecture that integrates signal-oriented architecture (e.g., CAN bus) with service-oriented architecture for enhanced flexibility. A integral component of the hybrid architecture is the dynamic link system, which bridges these architectures by dynamically integrating Capsule-specific components into the Driveboard software stack during runtime. The performance of the developed systen and its functionality were evaluated using a hardware setup integrated into a Driveboard prototype. The dynamic link aystem was evaluated including latency measurements, as well as functionality tests. Additionally, a cloud-based reconfiguration process enhances the versatility of the Driveboard by allowing for over-the-air software updates and resource allocation. The results show a promising hybrid, reconfigurable E/E architecture that aims to enable a robust transition towards a pure service-oriented architecture required in future electric autonomous vehicles. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2032-6653 2032-6653 |
DOI: | 10.3390/wevj16020111 |