TdDS-UNet: top-down deeply supervised U-Net for the delineation of 3D colorectal cancer

Automatically delineating colorectal cancers with fuzzy boundaries from 3D images is a challenging task, but the problem of fuzzy boundary delineation in existing deep learning-based methods have not been investigated in depth. Here, an encoder-decoder-based U-shaped network (U-Net) based on top-dow...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 69; no. 5; pp. 55018 - 55033
Main Authors Chen, Shuchao, Xie, Fei, Chen, Shenghuan, Liu, Shanshan, Li, Haojiang, Gong, Qiong, Ruan, Guangying, Liu, Lizhi, Chen, Hongbo
Format Journal Article
LanguageEnglish
Published England IOP Publishing 07.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Automatically delineating colorectal cancers with fuzzy boundaries from 3D images is a challenging task, but the problem of fuzzy boundary delineation in existing deep learning-based methods have not been investigated in depth. Here, an encoder-decoder-based U-shaped network (U-Net) based on top-down deep supervision (TdDS) was designed to accurately and automatically delineate the fuzzy boundaries of colorectal cancer. TdDS refines the semantic targets of the upper and lower stages by mapping ground truths that are more consistent with the stage properties than upsampling deep supervision. This stage-specific approach can guide the model to learn a coarse-to-fine delineation process and improve the delineation accuracy of fuzzy boundaries by gradually shrinking the boundaries. Experimental results showed that TdDS is more customizable and plays a role similar to the attentional mechanism, and it can further improve the capability of the model to delineate colorectal cancer contours. A total of 103, 12, and 29 3D pelvic magnetic resonance imaging volumes were used for training, validation, and testing, respectively. The comparative results indicate that the proposed method exhibits the best comprehensive performance, with a dice similarity coefficient (DSC) of 0.805 ± 0.053 and a hausdorff distance (HD) of 9.28 ± 5.14 voxels. In the delineation performance analysis section also showed that 44.49% of the delineation results are satisfactory and do not require revisions. This study can provide new technical support for the delineation of 3D colorectal cancer. Our method is open source, and the code is available athttps://github.com/odindis/TdDS/tree/main.
Bibliography:PMB-115353.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0031-9155
1361-6560
DOI:10.1088/1361-6560/ad25c5