The role of ATP-dependent chromatin remodeling complexes in regulation of genetic processes

Compaction of the genomic DNA into the chromatin structure reduces the accessibility of DNAbinding protein sites and complicates the realization of replication and transcription. In the cell, the negative effects of DNA condensation into chromatin are overcome by recruiting the complexes that change...

Full description

Saved in:
Bibliographic Details
Published inRussian journal of genetics Vol. 52; no. 5; pp. 463 - 472
Main Authors Mazina, M. Yu, Vorobyeva, N. E.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Compaction of the genomic DNA into the chromatin structure reduces the accessibility of DNAbinding protein sites and complicates the realization of replication and transcription. In the cell, the negative effects of DNA condensation into chromatin are overcome by recruiting the complexes that change the chromatin structure and are involved in the regulation of transcription and replication. The chromatin remodeling process includes the alteration of nucleosome position and chromatin density and changes in the histone composition of the nucleosomes. ATP-dependent chromatin remodeling is performed by enzymes—chromatin remodeling complexes. The united activity of these enzymes forms the dynamic properties of chromatin during different nuclear processes such as transcription, replication, DNA repair, homological recombination, and chromatin assembly. In this review, we summarize the currently available data on the structure of chromatin remodeling complexes of different families, the pathways of their recruitment to certain chromatin sites, and their functional activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1022-7954
1608-3369
DOI:10.1134/S1022795416050082