Predicting the Absorption Potential of Chemical Compounds Through a Deep Learning Approach

The human colorectal carcinoma cell line (Caco-2) is a commonly used in-vitro test that predicts the absorption potential of orally administered drugs. In-silico prediction methods, based on the Caco-2 assay data, may increase the effectiveness of the high-throughput screening of new drug candidates...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on computational biology and bioinformatics Vol. 15; no. 2; pp. 432 - 440
Main Authors Shin, Moonshik, Jang, Donjin, Nam, Hojung, Lee, Kwang Hyung, Lee, Doheon
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The human colorectal carcinoma cell line (Caco-2) is a commonly used in-vitro test that predicts the absorption potential of orally administered drugs. In-silico prediction methods, based on the Caco-2 assay data, may increase the effectiveness of the high-throughput screening of new drug candidates. However, previously developed in-silico models that predict the Caco-2 cellular permeability of chemical compounds use handcrafted features that may be dataset-specific and induce over-fitting problems. Deep Neural Network (DNN) generates high-level features based on non-linear transformations for raw features, which provides high discriminant power and, therefore, creates a good generalized model. We present a DNN-based binary Caco-2 permeability classifier. Our model was constructed based on 663 chemical compounds with in-vitro Caco-2 apparent permeability data. Two hundred nine molecular descriptors are used for generating the high-level features during DNN model generation. Dropout regularization is applied to solve the over-fitting problem and the non-linear activation. The Rectified Linear Unit (ReLU) is adopted to reduce the vanishing gradient problem. The results demonstrate that the high-level features generated by the DNN are more robust than handcrafted features for predicting the cellular permeability of structurally diverse chemical compounds in Caco-2 cell lines.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1545-5963
1557-9964
DOI:10.1109/TCBB.2016.2535233