Electrochemically reduced graphene oxide and its capacitance performance

Graphene oxide (GO) is reduced by a rapid cathodic reduction at −1.1 V in 0.05 M potassium biphthalate buffer solution (C8H4O4H2/C8H4O4HK). Potassium biphthalate plays an important role in the reduction process and it is superior to sodium acetate buffer solution (HOAc/NaOAc). The possible reason fo...

Full description

Saved in:
Bibliographic Details
Published inMaterials chemistry and physics Vol. 148; no. 3; pp. 903 - 908
Main Authors Zhang, Shu-bo, Yan, Yu-tao, Huo, Yu-qiu, Yang, Yang, Feng, Ji-long, Chen, Yu-feng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Graphene oxide (GO) is reduced by a rapid cathodic reduction at −1.1 V in 0.05 M potassium biphthalate buffer solution (C8H4O4H2/C8H4O4HK). Potassium biphthalate plays an important role in the reduction process and it is superior to sodium acetate buffer solution (HOAc/NaOAc). The possible reason for this dissimilarity is discussed in detail. The reduced graphene oxide (ERGO) is characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetry and differential scanning calorimetry (TGA/DSC), X-ray diffraction spectroscopy (XRD) and transmission electron microscopy (TEM). The results indicate that most of the oxygen functional groups in GO are successfully removed. Electrochemical studies are carried out using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. A maximum specific capacitance of 254.9 F g−1 can be achieved in pH 13 Na2SO4 solution at current density of 1.14 A g−1 within the potential window of 1.4 V. [Display omitted] •ERGO is obtained by 1.1 V cathodic reductions in potassium biphthalate buffer solution.•The role of potassium biphthalate is discussed in the reduction process.•Most of the oxygen functional groups in GO are successfully removed.•A maximum specific capacitance of 254.9 F g−1 is achieved in pH 13 Na2SO4 solution.
ISSN:0254-0584
1879-3312
DOI:10.1016/j.matchemphys.2014.08.068