Steady-state analysis of load-balancing algorithms in the sub-Halfin–Whitt regime

We study a class of load-balancing algorithms for many-server systems (N servers). Each server has a buffer of size $b-1$ with $b=O(\sqrt{\log N})$, i.e. a server can have at most one job in service and $b-1$ jobs queued. We focus on the steady-state performance of load-balancing algorithms in the h...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied probability Vol. 57; no. 2; pp. 578 - 596
Main Authors Liu, Xin, Ying, Lei
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.06.2020
Applied Probability Trust
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study a class of load-balancing algorithms for many-server systems (N servers). Each server has a buffer of size $b-1$ with $b=O(\sqrt{\log N})$, i.e. a server can have at most one job in service and $b-1$ jobs queued. We focus on the steady-state performance of load-balancing algorithms in the heavy traffic regime such that the load of the system is $\lambda = 1 - \gamma N^{-\alpha}$ for $0<\alpha<0.5$ and $\gamma > 0,$ which we call the sub-Halfin–Whitt regime ($\alpha=0.5$ is the so-called Halfin–Whitt regime). We establish a sufficient condition under which the probability that an incoming job is routed to an idle server is 1 asymptotically (as $N \to \infty$) at steady state. The class of load-balancing algorithms that satisfy the condition includes join-the-shortest-queue, idle-one-first, join-the-idle-queue, and power-of-d-choices with $d\geq \frac{r}{\gamma}N^\alpha\log N$ (r a positive integer). The proof of the main result is based on the framework of Stein’s method. A key contribution is to use a simple generator approximation based on state space collapse.
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2020.13