Cloning of a complementary DNA encoding an Ambystoma mexicanum metallothionein, AmMT, and expression of the gene during early development
We have used a polymerase chain reaction strategy to isolate a metallothionein (MT) cDNA from the amphibian Ambystoma mexicanum (axolotl). This cDNA is 875-bp long and encodes a 60 amino acid protein, AmMT, typical for family 1 MTs. It contains 20 cysteine (Cys) residues that can be aligned with tho...
Saved in:
Published in | DNA and cell biology Vol. 17; no. 1; p. 83 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.1998
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | We have used a polymerase chain reaction strategy to isolate a metallothionein (MT) cDNA from the amphibian Ambystoma mexicanum (axolotl). This cDNA is 875-bp long and encodes a 60 amino acid protein, AmMT, typical for family 1 MTs. It contains 20 cysteine (Cys) residues that can be aligned with those of other vertebrate MTs. The overall structure of the protein is unique among vertebrates in having only two amino acid residues before the first Cys at the amino-terminal end. Northern analyses showed that AmMT is expressed throughout embryogenesis, giving rise to three mRNA species of 650, 750, and 1,600 nucleotides (nt). The 750 and 1,600 nt transcripts appear to result from differential use of polyadenylation signals, whereas the 650 nt RNA could arise from deadenylation of the 750-nt transcript. Both the 750- and 1,600-nt RNAs were presented in embryos before the mid-blastula transition (MBT). After the MBT, the 750-nt RNA was replaced by the 650-nt RNA which was gradually degraded to undetectable levels in post-neurulation embryos. Levels of the 1,600-nt transcript increased at gastrulation and reach a maximum in Stage 30 embryos. In adult animals, levels of the 750-nt RNA were high in liver and testes, and very low in lung, gut, skin, and oviducts, whereas levels of the 1,600-nt transcript were similar and moderately elevated in all tissues examined. In contrast, in Xenopus laevis, Northern analysis did not detect XIMT-A mRNA in embryos before late neurulation (Stage 24). XIMT-A mRNA levels then increased sharply in Stage 36 hatched embryos at levels similar to those found in adult livers. These results show that AmMT presents a unique expression pattern among metazoans being transcribed as two transcripts differing in the length of their 3' untranslated regions, the levels of which vary during embryogenesis and in adult tissues. |
---|---|
ISSN: | 1044-5498 |
DOI: | 10.1089/dna.1998.17.83 |