Phosphorus Differences in Trunk-Epiphytic and Rock-Epiphytic Habitats Modify Pyrrosia sheareri Root Traits but Not Leaf Photosynthetic Rates in a Karst Forest

Phosphorus (P) is a pivotal element in plant energy metabolism and growth, and P limitation is widespread among plants in nature. However, our understanding of how epiphytes allocate P and adapt to P-deficient environments remains limited. We selected an obligate epiphyte Pyrrosia sheareri from a su...

Full description

Saved in:
Bibliographic Details
Published inForests Vol. 16; no. 6; p. 903
Main Authors Zou, Shun, Huang, Chumin, Feng, Tu, Chen, Yang, Bai, Xiaolong, Li, Wangjun, He, Bin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Phosphorus (P) is a pivotal element in plant energy metabolism and growth, and P limitation is widespread among plants in nature. However, our understanding of how epiphytes allocate P and adapt to P-deficient environments remains limited. We selected an obligate epiphyte Pyrrosia sheareri from a subtropical forest as our research subject. We compared its carbon (C)–nitrogen (N)–P ecological stoichiometry, P fractions, and morphological and physiological traits under the two habitats (trunk-epiphytic and rock-epiphytic). We also constructed a plant trait network method (PTN) that includes 62 traits to explore the co-variation characteristics of plant traits across the whole plant and identify the hub traits. We found that the following: (1) Habitat type significantly affects plant P concentration, with trunk-epiphytic plants having higher P concentration than rock-epiphytic plants. Pyrrosia sheareri may be more strongly limited by P according to the results of C-N-P ecological stoichiometry. (2) Epiphytic habitats significantly affect plant P fractions but do not influence the relative allocation of P fractions. (3) Compared with rock-epiphytic plants, trunk-epiphytic plants adopt a root resource-acquisition strategy rather than relying on leaves. (4) P-related indicators link ecological stoichiometry with morphological and physiological traits and are hub traits in PTN. Overall, P. plays a key functional role in the environmental acclimatization of Pyrrosia sheareri, highlighting the morphological and physiological adaptability of epiphytes to various habitats in terms of P availability, allocation, and storage.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-4907
1999-4907
DOI:10.3390/f16060903