Electric Control of Thermal Contributions to the Nonlinear Optical Properties of Nitrobenzene

Thermal effects are inevitable when an absorptive nonlinear optical material interacts with long pulse duration or high repetition rate laser pulses. It results in inaccurate characterization and reduction in efficiency of the nonlinear materials for device applications. In this article, the study i...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Physics Research Vol. 3; no. 1
Main Authors Bongu, Sudhakara Reddy, Buchmüller, Maximilian, Neumaier, Daniel, Görrn, Patrick
Format Journal Article
LanguageEnglish
Published Wiley-VCH 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermal effects are inevitable when an absorptive nonlinear optical material interacts with long pulse duration or high repetition rate laser pulses. It results in inaccurate characterization and reduction in efficiency of the nonlinear materials for device applications. In this article, the study investigates the influence of an external electric field on the thermal contribution to the nonlinear optical response of nitrobenzene (NB). Z‐scan measurements are performed on NB using 330 ps laser pulses at a wavelength of 532 nm with variable (10 Hz to 1 kHz) repetition rates. At low repetition rates, NB shows a positive nonlinear refractive index (+ n2), which leads to self‐focusing of the laser beam due to the optical Kerr effect. Cumulative thermal effects occur above a repetition rate of 200 Hz. At high repetition rates (>750 Hz), the sign of n2 becomes negative, implying a self‐defocusing behavior of the sample arising from the thermal‐induced nonlinear refractive index. By applying an external DC field to the NB, a reduction of the thermal contribution can be observed. At a sufficiently high electric field strength, the thermal contribution is suppressed and the inherent Kerr nonlinearity can be observed despite the high repetition rate of the pump laser. The electric control over the thermal contribution to the nonlinear optical properties of nitrobenzene is demonstrated. By applying an external DC field to the material, a flow of the liquid is triggered. This motion enables a permanent exchange of material in the illumination region and thus thermal lens effects can be controlled.
AbstractList Abstract Thermal effects are inevitable when an absorptive nonlinear optical material interacts with long pulse duration or high repetition rate laser pulses. It results in inaccurate characterization and reduction in efficiency of the nonlinear materials for device applications. In this article, the study investigates the influence of an external electric field on the thermal contribution to the nonlinear optical response of nitrobenzene (NB). Z‐scan measurements are performed on NB using 330 ps laser pulses at a wavelength of 532 nm with variable (10 Hz to 1 kHz) repetition rates. At low repetition rates, NB shows a positive nonlinear refractive index (+ n 2 ), which leads to self‐focusing of the laser beam due to the optical Kerr effect. Cumulative thermal effects occur above a repetition rate of 200 Hz. At high repetition rates (>750 Hz), the sign of n 2 becomes negative, implying a self‐defocusing behavior of the sample arising from the thermal‐induced nonlinear refractive index. By applying an external DC field to the NB, a reduction of the thermal contribution can be observed. At a sufficiently high electric field strength, the thermal contribution is suppressed and the inherent Kerr nonlinearity can be observed despite the high repetition rate of the pump laser.
Thermal effects are inevitable when an absorptive nonlinear optical material interacts with long pulse duration or high repetition rate laser pulses. It results in inaccurate characterization and reduction in efficiency of the nonlinear materials for device applications. In this article, the study investigates the influence of an external electric field on the thermal contribution to the nonlinear optical response of nitrobenzene (NB). Z‐scan measurements are performed on NB using 330 ps laser pulses at a wavelength of 532 nm with variable (10 Hz to 1 kHz) repetition rates. At low repetition rates, NB shows a positive nonlinear refractive index (+ n2), which leads to self‐focusing of the laser beam due to the optical Kerr effect. Cumulative thermal effects occur above a repetition rate of 200 Hz. At high repetition rates (>750 Hz), the sign of n2 becomes negative, implying a self‐defocusing behavior of the sample arising from the thermal‐induced nonlinear refractive index. By applying an external DC field to the NB, a reduction of the thermal contribution can be observed. At a sufficiently high electric field strength, the thermal contribution is suppressed and the inherent Kerr nonlinearity can be observed despite the high repetition rate of the pump laser. The electric control over the thermal contribution to the nonlinear optical properties of nitrobenzene is demonstrated. By applying an external DC field to the material, a flow of the liquid is triggered. This motion enables a permanent exchange of material in the illumination region and thus thermal lens effects can be controlled.
Abstract Thermal effects are inevitable when an absorptive nonlinear optical material interacts with long pulse duration or high repetition rate laser pulses. It results in inaccurate characterization and reduction in efficiency of the nonlinear materials for device applications. In this article, the study investigates the influence of an external electric field on the thermal contribution to the nonlinear optical response of nitrobenzene (NB). Z‐scan measurements are performed on NB using 330 ps laser pulses at a wavelength of 532 nm with variable (10 Hz to 1 kHz) repetition rates. At low repetition rates, NB shows a positive nonlinear refractive index (+ n2), which leads to self‐focusing of the laser beam due to the optical Kerr effect. Cumulative thermal effects occur above a repetition rate of 200 Hz. At high repetition rates (>750 Hz), the sign of n2 becomes negative, implying a self‐defocusing behavior of the sample arising from the thermal‐induced nonlinear refractive index. By applying an external DC field to the NB, a reduction of the thermal contribution can be observed. At a sufficiently high electric field strength, the thermal contribution is suppressed and the inherent Kerr nonlinearity can be observed despite the high repetition rate of the pump laser.
Author Görrn, Patrick
Bongu, Sudhakara Reddy
Buchmüller, Maximilian
Neumaier, Daniel
Author_xml – sequence: 1
  givenname: Sudhakara Reddy
  orcidid: 0000-0002-8728-8232
  surname: Bongu
  fullname: Bongu, Sudhakara Reddy
  organization: University of  Wuppertal
– sequence: 2
  givenname: Maximilian
  surname: Buchmüller
  fullname: Buchmüller, Maximilian
  organization: University of  Wuppertal
– sequence: 3
  givenname: Daniel
  surname: Neumaier
  fullname: Neumaier, Daniel
  organization: University of  Wuppertal
– sequence: 4
  givenname: Patrick
  orcidid: 0000-0001-9416-4310
  surname: Görrn
  fullname: Görrn, Patrick
  email: goerrn@uni-wuppertal.de
  organization: University of  Wuppertal
BookMark eNqFkE9LAzEUxINUsGqvnvcLtOYlm2T3KKVqQbRIBS8SkuyLpqybkl3xz6d360rx5ukNw8yPxxyTURMbJOQM6AwoZedm-5FmjDJOKRX8gIyZEjAFRunojz4ik7bd9BFWlMBzGJOnRY2uS8Fl89h0KdZZ9Nn6BdOrqQcr2LcuxKbNuph1L5jdxqYODZqU3W274PrYKsUtpi5guyvfhh5jsfnCBk_JoTd1i5Pfe0IeLhfr-fX05u5qOb-4mTrOQE7RWSuw4I5XwhWSSWZVlZfOlbny3ismhPQOCskFh8qUorKylLxUXgHmFvgJWQ7cKpqN3qbwatKnjiboHyOmZ236B12NmpUKPK2YsyXLwYJV3OV5YRRnspLU96zZwHIptm1Cv-cB1but9W5rvd-6L4ih8B5q_PwnrS9Wj_fAgEv-DVjchHw
CitedBy_id crossref_primary_10_3390_opt5010005
Cites_doi 10.7717/peerj-pchem.1
10.1364/JOSAB.420119
10.1103/PhysRevA.20.2170
10.1016/j.optlastec.2017.09.036
10.1039/C7RA07551K
10.1364/AO.56.000644
10.7567/JJAP.53.112702
10.1016/j.jqsrt.2021.107867
10.1063/1.2926815
10.1109/2944.806765
10.1038/srep17899
10.1364/JOSAB.36.001246
10.1021/jp807730u
10.1103/PhysRevA.12.1036
10.1088/1464-4258/1/2/013
10.1364/OE.23.024171
10.1088/1555-6611/ab6f09
10.3103/S1541308X12020082
10.1364/JOSAB.418635
10.1080/23746149.2017.1367628
10.1364/OE.22.023955
10.1002/smll.202002252
10.1080/14786447508641302
10.1063/1.4907254
10.1002/lpor.201800282
10.1364/OPEX.13.007976
10.1070/QE1986v016n07ABEH007187
10.1364/OL.19.001040
10.1007/s003400050866
10.1103/PhysRev.152.149
10.1088/0034-4885/79/3/036401
10.1039/B512646K
10.1063/1.1652962
10.1063/1.1351844
10.1007/s003400050785
10.1126/science.262.5138.1386
10.1002/lpor.202200258
10.1016/0030-4018(84)90133-0
10.1109/JLT.2005.857768
10.1016/j.optcom.2023.129468
10.1109/3.53394
10.1088/1464-4258/1/6/302
10.1016/j.ijleo.2021.168546
10.1007/978-3-031-06197-4_1
10.1007/s11082-022-03667-y
ContentType Journal Article
Copyright 2023 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH
Copyright_xml – notice: 2023 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH
DBID 24P
WIN
AAYXX
CITATION
DOA
DOI 10.1002/apxr.202300053
DatabaseName Wiley_OA刊
Wiley Free Archive
CrossRef
Directory of Open Access Journals(OpenAccess)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley_OA刊
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2751-1200
EndPage n/a
ExternalDocumentID oai_doaj_org_article_2971f0d2cb9241b1b73c448a7326d60f
10_1002_apxr_202300053
APXR12136
Genre article
GrantInformation_xml – fundername: Federal Ministry of Education and Research
  funderid: 13N15390
– fundername: European Research Council (ERC)
  funderid: 637367
GroupedDBID 0R~
24P
88I
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
KB.
M2P
PCBAR
PDBOC
PIMPY
WIN
AAYXX
CITATION
ID FETCH-LOGICAL-c3216-ecbb5e83c3d5c86262b7d49cc947fff72556fc1863531da95db696397f71e4b13
IEDL.DBID DOA
ISSN 2751-1200
IngestDate Tue Oct 22 15:16:44 EDT 2024
Thu Sep 12 18:04:34 EDT 2024
Sat Aug 24 00:54:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3216-ecbb5e83c3d5c86262b7d49cc947fff72556fc1863531da95db696397f71e4b13
ORCID 0000-0002-8728-8232
0000-0001-9416-4310
OpenAccessLink https://doaj.org/article/2971f0d2cb9241b1b73c448a7326d60f
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_2971f0d2cb9241b1b73c448a7326d60f
crossref_primary_10_1002_apxr_202300053
wiley_primary_10_1002_apxr_202300053_APXR12136
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Advanced Physics Research
PublicationYear 2024
Publisher Wiley-VCH
Publisher_xml – name: Wiley-VCH
References 1966; 152
2022; 252
2017; 7
2015; 5
2023; 17
2019; 1
2019; 13
1999; 69
2019; 36
1986; 16
2009
2020; 16
1975; 12
1993; 262
2000; 70
2006
1969; 15
2015; 106
1999; 1
1999; 5
1964; 258
2005; 23
2016; 79
2014; 22
1984; 51
2015; 23
2021; 38
2018; 3
1990; 26
1994; 19
2022
2020; 30
2017; 56
2019
1875; 50
2021; 274
2022; 54
2023; 537
2008; 112
1979; 20
2008; 992
2018; 99
2001; 78
2012; 20
2005; 13
2014; 53
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_48_1
Mayer G. (e_1_2_8_1_1) 1964; 258
e_1_2_8_3_1
e_1_2_8_2_1
Lide D. R. (e_1_2_8_46_1) 2009
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 12
  start-page: 1036
  year: 1975
  publication-title: Phys. Rev. A
– volume: 50
  start-page: 337
  year: 1875
  publication-title: Lond. Edinb. Dubl. Phil. Mag. J. Sci.
– volume: 19
  start-page: 1040
  year: 1994
  publication-title: Opt. Lett.
– year: 2009
– volume: 13
  start-page: 7976
  year: 2005
  publication-title: Opt. Express
– volume: 23
  year: 2015
  publication-title: Opt. Express
– volume: 51
  start-page: 433
  year: 1984
  publication-title: Opt. Commun.
– volume: 5
  start-page: 1385
  year: 1999
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– start-page: 131
  year: 2006
  publication-title: Chem. Commun.
– volume: 78
  start-page: 1484
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 537
  year: 2023
  publication-title: Opt. Commun.
– volume: 23
  start-page: 3606
  year: 2005
  publication-title: J. Lightwave Technol.
– volume: 152
  start-page: 149
  year: 1966
  publication-title: Phys. Rev.
– volume: 69
  start-page: 133
  year: 1999
  publication-title: Appl. Phys. B
– start-page: 1
  year: 2019
  publication-title: PeerJ Phys. Chem.
– volume: 54
  start-page: 300
  year: 2022
  publication-title: Opt. Quantum Electron.
– volume: 274
  year: 2021
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 13
  year: 2019
  publication-title: Laser Photonics Rev.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 3
  year: 2018
  publication-title: Adv. Phys.: X
– volume: 15
  start-page: 192
  year: 1969
  publication-title: Appl. Phys. Lett.
– volume: 38
  start-page: 1104
  year: 2021
  publication-title: J. Opt. Soc. Am. B
– volume: 258
  start-page: 2039
  year: 1964
  publication-title: C. R. Hebd. Seances Acad Sci
– volume: 99
  start-page: 411
  year: 2018
  publication-title: Opt. Laser Technol.
– volume: 53
  year: 2014
  publication-title: Jpn. J. Appl. Phys.
– volume: 20
  start-page: 2170
  year: 1979
  publication-title: Phys. Rev. A
– volume: 16
  year: 2020
  publication-title: Small
– volume: 20
  start-page: 137
  year: 2012
  publication-title: Phys. Wave Phenom.
– start-page: 1
  year: 2022
  end-page: 32
– volume: 56
  start-page: 644
  year: 2017
  publication-title: Appl. Opt.
– volume: 112
  year: 2008
  publication-title: J. Phys. Chem. B
– volume: 262
  start-page: 1386
  year: 1993
  publication-title: Science
– volume: 992
  start-page: 1183
  year: 2008
  publication-title: AIP Conf. Proc.
– volume: 79
  start-page: 0034
  year: 2016
  publication-title: Rep. Prog. Phys.
– volume: 70
  start-page: 587
  year: 2000
  publication-title: Appl. Phys. B
– volume: 17
  year: 2023
  publication-title: Laser Photonics Rev.
– volume: 252
  year: 2022
  publication-title: Optik
– volume: 30
  year: 2020
  publication-title: Laser Phys.
– volume: 16
  start-page: 872
  year: 1986
  publication-title: Quantum Electron.
– volume: 1
  year: 2019
  publication-title: PeerJ Phys. Chem.
– volume: 1
  start-page: 662
  year: 1999
  publication-title: J. Opt. A: Pure Appl. Opt.
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 38
  start-page: 2019
  year: 2021
  publication-title: J. Opt. Soc. Am. B
– volume: 1
  start-page: 192
  year: 1999
  publication-title: J. Opt. A: Pure Appl. Opt.
– volume: 36
  start-page: 1246
  year: 2019
  publication-title: J. Opt. Soc. Am. B
– volume: 106
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 26
  start-page: 760
  year: 1990
  publication-title: IEEE J. Quantum Electron.
– volume: 22
  year: 2014
  publication-title: Opt. Express
– ident: e_1_2_8_21_1
  doi: 10.7717/peerj-pchem.1
– ident: e_1_2_8_44_1
  doi: 10.1364/JOSAB.420119
– ident: e_1_2_8_14_1
  doi: 10.1103/PhysRevA.20.2170
– ident: e_1_2_8_12_1
  doi: 10.1016/j.optlastec.2017.09.036
– ident: e_1_2_8_22_1
  doi: 10.1039/C7RA07551K
– ident: e_1_2_8_39_1
  doi: 10.1364/AO.56.000644
– volume: 258
  start-page: 2039
  year: 1964
  ident: e_1_2_8_1_1
  publication-title: C. R. Hebd. Seances Acad Sci
  contributor:
    fullname: Mayer G.
– ident: e_1_2_8_36_1
  doi: 10.7567/JJAP.53.112702
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jqsrt.2021.107867
– ident: e_1_2_8_32_1
  doi: 10.1063/1.2926815
– ident: e_1_2_8_6_1
  doi: 10.1109/2944.806765
– ident: e_1_2_8_17_1
  doi: 10.1038/srep17899
– ident: e_1_2_8_38_1
  doi: 10.1364/JOSAB.36.001246
– ident: e_1_2_8_5_1
  doi: 10.1021/jp807730u
– ident: e_1_2_8_29_1
  doi: 10.1103/PhysRevA.12.1036
– ident: e_1_2_8_31_1
  doi: 10.1088/1464-4258/1/2/013
– ident: e_1_2_8_43_1
  doi: 10.1364/OE.23.024171
– ident: e_1_2_8_26_1
  doi: 10.1088/1555-6611/ab6f09
– ident: e_1_2_8_42_1
  doi: 10.3103/S1541308X12020082
– ident: e_1_2_8_16_1
  doi: 10.1364/JOSAB.418635
– ident: e_1_2_8_24_1
  doi: 10.1080/23746149.2017.1367628
– ident: e_1_2_8_33_1
  doi: 10.1364/OE.22.023955
– ident: e_1_2_8_18_1
  doi: 10.1002/smll.202002252
– ident: e_1_2_8_2_1
  doi: 10.1080/14786447508641302
– ident: e_1_2_8_40_1
  doi: 10.1063/1.4907254
– ident: e_1_2_8_10_1
  doi: 10.1002/lpor.201800282
– ident: e_1_2_8_35_1
  doi: 10.1364/OPEX.13.007976
– ident: e_1_2_8_45_1
  doi: 10.1070/QE1986v016n07ABEH007187
– ident: e_1_2_8_9_1
  doi: 10.1364/OL.19.001040
– ident: e_1_2_8_47_1
  doi: 10.1007/s003400050866
– ident: e_1_2_8_28_1
  doi: 10.1103/PhysRev.152.149
– ident: e_1_2_8_11_1
  doi: 10.1088/0034-4885/79/3/036401
– ident: e_1_2_8_23_1
  doi: 10.1039/B512646K
– ident: e_1_2_8_3_1
  doi: 10.1063/1.1652962
– ident: e_1_2_8_25_1
  doi: 10.1063/1.1351844
– ident: e_1_2_8_34_1
  doi: 10.1007/s003400050785
– ident: e_1_2_8_4_1
  doi: 10.1126/science.262.5138.1386
– ident: e_1_2_8_8_1
  doi: 10.1002/lpor.202200258
– ident: e_1_2_8_13_1
  doi: 10.7717/peerj-pchem.1
– ident: e_1_2_8_30_1
  doi: 10.1016/0030-4018(84)90133-0
– ident: e_1_2_8_7_1
  doi: 10.1109/JLT.2005.857768
– ident: e_1_2_8_37_1
  doi: 10.1016/j.optcom.2023.129468
– ident: e_1_2_8_41_1
  doi: 10.1109/3.53394
– ident: e_1_2_8_48_1
  doi: 10.1088/1464-4258/1/6/302
– volume-title: CRC Handbook of Chemistry and Physics
  year: 2009
  ident: e_1_2_8_46_1
  contributor:
    fullname: Lide D. R.
– ident: e_1_2_8_19_1
  doi: 10.1016/j.ijleo.2021.168546
– ident: e_1_2_8_15_1
  doi: 10.1007/978-3-031-06197-4_1
– ident: e_1_2_8_27_1
  doi: 10.1007/s11082-022-03667-y
SSID ssj0002891341
Score 2.3055704
Snippet Thermal effects are inevitable when an absorptive nonlinear optical material interacts with long pulse duration or high repetition rate laser pulses. It...
Abstract Thermal effects are inevitable when an absorptive nonlinear optical material interacts with long pulse duration or high repetition rate laser pulses....
Abstract Thermal effects are inevitable when an absorptive nonlinear optical material interacts with long pulse duration or high repetition rate laser pulses....
SourceID doaj
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
SubjectTerms electrical stirring
nonlinear refractive index
optical Kerr effect
self‐focusing systems
thermal lens
SummonAdditionalLinks – databaseName: Wiley_OA刊
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeDzosXUVScv8hB8FTWpGnTHOfYEME5xMEuUppfMpBudBPEv968pKvuJNJbaFr68uubl77PQ-hGCXdlxkRUsDRiWieREDyOpDVCSSqM4RAo_DjO7qfsYZbOfkXxBz5E63CDkeHnaxjgpVz1fqCh5fITeJ5OQkNH2kV7gI0Bej5lk9bLQuEUzqevpDwlEXF9YkNujGlv-xFbK5MH-G8LVr_ijA7RQSMVcT-07RHaMdUxeh36vDVzhQfhJ3O8sNi1tZtf30NRk8BqhdcL7NQdHoePLWv8tPSOazwBB3wNJFWoPJ77kKDqy816J2g6Gr4M7qMmRUKkEkqyyCgpU5MnKtGpgs0JlVwzoZRg3FrLATBmFcmdrEiILkWqZSbgLM9yYpgkySnqVIvKnCGc61TGucmUEIopLfPMEKl4zGwaax3nXXS7MU-xDCSMIjCPaQGGLFpDdtEdWK-9CwjWvmBRvxXNgCio4MTGmirpdoBEEskT5baKJXd6Umex7aLQ-n-8q-hPZs-ApcvO_1vhAu27Uhb8KZeos64_zJVTGGt57TvRN-2YyjU
  priority: 102
  providerName: Wiley-Blackwell
Title Electric Control of Thermal Contributions to the Nonlinear Optical Properties of Nitrobenzene
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202300053
https://doaj.org/article/2971f0d2cb9241b1b73c448a7326d60f
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86L15EUXF-jBwET3VJmjbNcRsbQ7CW4WAXKc0XTKQbc4L415uPbmwnL9JbaJrye-Hl916S3wPgXnL7pFpHhNMkokrFEecMRcJoLgXhWjN3Ufg5T8dT-jRLZjulvtyZsCAPHIDrEs6wQYpIYSMFLLBgsbQhRcUs71ApMt77Ir4TTL2H7TOnVLZRaUSkWy2_nfynZdxu3u2tQl6sf5-c-tVldApOGloIe-F3zsCBrs_B29DXqJlLOAgHyuHCQGtX60s_QlNTrOoTrhfQMjmYB-GLagVflj5JDQuXbF851VTXOZ_76z_1j_VwF2A6Gr4OxlFTDiGSMcFppKUQic5iGatEukCECKYol5JTZoxhTkzMSJxZChFjVfFEiZS7fTvDsKYCx5egVS9qfQVgphKBMp1KziWVSmSpxkIyRE2ClEJZGzxs4CmXQfWiDPrGpHRAllsg26Dv0Nu-5dSqfYO1YdnYsPzLhm3w6LH_Y6yyV8wmToIuvf6PUW_Asf00DfmUW9Bar770nWUYa9EBh4QWHXDUH-bFpOOn1i9RPM--
link.rule.ids 315,783,787,867,2109,11574,27936,27937,46064,46488,50826,50935
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3oRRcX6zEHwtHSTzSabYy0tVdtapAUvsjQvKUhbagXx15tJ2kpPInsLyS47r3yZJN8gdKOlf7i1CZUsT5gxWSKlSBPlrNSKSmsFXBTu9nh7yB5e8tVpQrgLE_kh1gk38IwQr8HBISFd-2UNHc2-gNDTY2iwpG20w7i3RiB3Zv11moXCNlyoX0lFThLijWJF3ZjS2uYrNqamwOC_iVjDlNM6QPtLrIjrUbmHaMtOjtBrMxSuGWvciKfM8dRhr2wfYN9j07KC1QdeTLGHd7gX_3Y0x0-zkLnGfcjAz4FKFQb3xuFO0OTbh71jNGw1B412sqyRkOiMEp5YrVRui0xnJtewOqFKGCa1lkw45wQwjDlNCo8rMmJGMjeKS9jMc4JYpkh2giqT6cSeIlyYXKWF5VpKzbRRBbdEaZEyl6fGpEUV3a7EU84iFUYZSY9pCYIs14KsojuQ3roXUFiHhun8rVx6REmlIC41VCu_BCSKKJFpv1YcCQ8oDU9dFUX1__Gtst5_eQZeOn723wHXaLc96HbKzn3v8Rzt-R4sJlcuUGUx_7SXHm4s1FUwqB_7_c2p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6gfgiiorzMw-CT2VNmjTN45wbftYhToYgZfmSgbRjThD_epOmq-5JpG8haend5fK7S_I7AE4lt0-sdYA5oQFRKgo4Z2EgjOZSYK41cxeF79L4ckiuR3T06xa_54eoE25uZpT-2k3wqTLtH9LQ8fTT8XlaCO0MaRU0LdTA1sabnafh87DOs2C3D1cWsMSMogBZq1hwN4a4vfySpbWppPBfhqzlmtPfBBsVWIQdr90tsKLzbfDSKyvXTCTs-mPmsDDQatt62DffVJWweofzAlp8B1P_u-MZvJ-WqWs4cCn4meNSdYPTSXkpKP-yfm8HDPu9x-5lUBVJCGSEURxoKQTVSSQjRaULT7BginApOWHGGOYoxoxEiQUWEVJjTpWIudvNMwxpIlC0Cxp5kes9ABNFRZjoWHIuiVQiiTUSkoXE0FCpMGmBs4V4sqnnwsg86zHOnCCzWpAtcO6kV_dyHNZlQzF7zaopkWHOkAkVlsLGgEggwSJpg8Uxs4hSxaFpAa__P76VdQajB0dMF-__d8AJWBtc9LPbq_TmAKzbDsQnVw5BYz770EcWbszFcWVR38c2zpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electric+Control+of+Thermal+Contributions+to+the+Nonlinear+Optical+Properties+of+Nitrobenzene&rft.jtitle=Advanced+Physics+Research&rft.au=Bongu%2C+Sudhakara+Reddy&rft.au=Buchm%C3%BCller%2C+Maximilian&rft.au=Neumaier%2C+Daniel&rft.au=G%C3%B6rrn%2C+Patrick&rft.date=2024-01-01&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=3&rft.issue=1&rft_id=info:doi/10.1002%2Fapxr.202300053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_apxr_202300053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon