Electric Control of Thermal Contributions to the Nonlinear Optical Properties of Nitrobenzene
Thermal effects are inevitable when an absorptive nonlinear optical material interacts with long pulse duration or high repetition rate laser pulses. It results in inaccurate characterization and reduction in efficiency of the nonlinear materials for device applications. In this article, the study i...
Saved in:
Published in | Advanced Physics Research Vol. 3; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Wiley-VCH
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thermal effects are inevitable when an absorptive nonlinear optical material interacts with long pulse duration or high repetition rate laser pulses. It results in inaccurate characterization and reduction in efficiency of the nonlinear materials for device applications. In this article, the study investigates the influence of an external electric field on the thermal contribution to the nonlinear optical response of nitrobenzene (NB). Z‐scan measurements are performed on NB using 330 ps laser pulses at a wavelength of 532 nm with variable (10 Hz to 1 kHz) repetition rates. At low repetition rates, NB shows a positive nonlinear refractive index (+ n2), which leads to self‐focusing of the laser beam due to the optical Kerr effect. Cumulative thermal effects occur above a repetition rate of 200 Hz. At high repetition rates (>750 Hz), the sign of n2 becomes negative, implying a self‐defocusing behavior of the sample arising from the thermal‐induced nonlinear refractive index. By applying an external DC field to the NB, a reduction of the thermal contribution can be observed. At a sufficiently high electric field strength, the thermal contribution is suppressed and the inherent Kerr nonlinearity can be observed despite the high repetition rate of the pump laser.
The electric control over the thermal contribution to the nonlinear optical properties of nitrobenzene is demonstrated. By applying an external DC field to the material, a flow of the liquid is triggered. This motion enables a permanent exchange of material in the illumination region and thus thermal lens effects can be controlled. |
---|---|
AbstractList | Abstract
Thermal effects are inevitable when an absorptive nonlinear optical material interacts with long pulse duration or high repetition rate laser pulses. It results in inaccurate characterization and reduction in efficiency of the nonlinear materials for device applications. In this article, the study investigates the influence of an external electric field on the thermal contribution to the nonlinear optical response of nitrobenzene (NB). Z‐scan measurements are performed on NB using 330 ps laser pulses at a wavelength of 532 nm with variable (10 Hz to 1 kHz) repetition rates. At low repetition rates, NB shows a positive nonlinear refractive index (+
n
2
), which leads to self‐focusing of the laser beam due to the optical Kerr effect. Cumulative thermal effects occur above a repetition rate of 200 Hz. At high repetition rates (>750 Hz), the sign of
n
2
becomes negative, implying a self‐defocusing behavior of the sample arising from the thermal‐induced nonlinear refractive index. By applying an external DC field to the NB, a reduction of the thermal contribution can be observed. At a sufficiently high electric field strength, the thermal contribution is suppressed and the inherent Kerr nonlinearity can be observed despite the high repetition rate of the pump laser. Thermal effects are inevitable when an absorptive nonlinear optical material interacts with long pulse duration or high repetition rate laser pulses. It results in inaccurate characterization and reduction in efficiency of the nonlinear materials for device applications. In this article, the study investigates the influence of an external electric field on the thermal contribution to the nonlinear optical response of nitrobenzene (NB). Z‐scan measurements are performed on NB using 330 ps laser pulses at a wavelength of 532 nm with variable (10 Hz to 1 kHz) repetition rates. At low repetition rates, NB shows a positive nonlinear refractive index (+ n2), which leads to self‐focusing of the laser beam due to the optical Kerr effect. Cumulative thermal effects occur above a repetition rate of 200 Hz. At high repetition rates (>750 Hz), the sign of n2 becomes negative, implying a self‐defocusing behavior of the sample arising from the thermal‐induced nonlinear refractive index. By applying an external DC field to the NB, a reduction of the thermal contribution can be observed. At a sufficiently high electric field strength, the thermal contribution is suppressed and the inherent Kerr nonlinearity can be observed despite the high repetition rate of the pump laser. The electric control over the thermal contribution to the nonlinear optical properties of nitrobenzene is demonstrated. By applying an external DC field to the material, a flow of the liquid is triggered. This motion enables a permanent exchange of material in the illumination region and thus thermal lens effects can be controlled. Abstract Thermal effects are inevitable when an absorptive nonlinear optical material interacts with long pulse duration or high repetition rate laser pulses. It results in inaccurate characterization and reduction in efficiency of the nonlinear materials for device applications. In this article, the study investigates the influence of an external electric field on the thermal contribution to the nonlinear optical response of nitrobenzene (NB). Z‐scan measurements are performed on NB using 330 ps laser pulses at a wavelength of 532 nm with variable (10 Hz to 1 kHz) repetition rates. At low repetition rates, NB shows a positive nonlinear refractive index (+ n2), which leads to self‐focusing of the laser beam due to the optical Kerr effect. Cumulative thermal effects occur above a repetition rate of 200 Hz. At high repetition rates (>750 Hz), the sign of n2 becomes negative, implying a self‐defocusing behavior of the sample arising from the thermal‐induced nonlinear refractive index. By applying an external DC field to the NB, a reduction of the thermal contribution can be observed. At a sufficiently high electric field strength, the thermal contribution is suppressed and the inherent Kerr nonlinearity can be observed despite the high repetition rate of the pump laser. |
Author | Görrn, Patrick Bongu, Sudhakara Reddy Buchmüller, Maximilian Neumaier, Daniel |
Author_xml | – sequence: 1 givenname: Sudhakara Reddy orcidid: 0000-0002-8728-8232 surname: Bongu fullname: Bongu, Sudhakara Reddy organization: University of Wuppertal – sequence: 2 givenname: Maximilian surname: Buchmüller fullname: Buchmüller, Maximilian organization: University of Wuppertal – sequence: 3 givenname: Daniel surname: Neumaier fullname: Neumaier, Daniel organization: University of Wuppertal – sequence: 4 givenname: Patrick orcidid: 0000-0001-9416-4310 surname: Görrn fullname: Görrn, Patrick email: goerrn@uni-wuppertal.de organization: University of Wuppertal |
BookMark | eNqFkE9LAzEUxINUsGqvnvcLtOYlm2T3KKVqQbRIBS8SkuyLpqybkl3xz6d360rx5ukNw8yPxxyTURMbJOQM6AwoZedm-5FmjDJOKRX8gIyZEjAFRunojz4ik7bd9BFWlMBzGJOnRY2uS8Fl89h0KdZZ9Nn6BdOrqQcr2LcuxKbNuph1L5jdxqYODZqU3W274PrYKsUtpi5guyvfhh5jsfnCBk_JoTd1i5Pfe0IeLhfr-fX05u5qOb-4mTrOQE7RWSuw4I5XwhWSSWZVlZfOlbny3ismhPQOCskFh8qUorKylLxUXgHmFvgJWQ7cKpqN3qbwatKnjiboHyOmZ236B12NmpUKPK2YsyXLwYJV3OV5YRRnspLU96zZwHIptm1Cv-cB1but9W5rvd-6L4ih8B5q_PwnrS9Wj_fAgEv-DVjchHw |
CitedBy_id | crossref_primary_10_3390_opt5010005 |
Cites_doi | 10.7717/peerj-pchem.1 10.1364/JOSAB.420119 10.1103/PhysRevA.20.2170 10.1016/j.optlastec.2017.09.036 10.1039/C7RA07551K 10.1364/AO.56.000644 10.7567/JJAP.53.112702 10.1016/j.jqsrt.2021.107867 10.1063/1.2926815 10.1109/2944.806765 10.1038/srep17899 10.1364/JOSAB.36.001246 10.1021/jp807730u 10.1103/PhysRevA.12.1036 10.1088/1464-4258/1/2/013 10.1364/OE.23.024171 10.1088/1555-6611/ab6f09 10.3103/S1541308X12020082 10.1364/JOSAB.418635 10.1080/23746149.2017.1367628 10.1364/OE.22.023955 10.1002/smll.202002252 10.1080/14786447508641302 10.1063/1.4907254 10.1002/lpor.201800282 10.1364/OPEX.13.007976 10.1070/QE1986v016n07ABEH007187 10.1364/OL.19.001040 10.1007/s003400050866 10.1103/PhysRev.152.149 10.1088/0034-4885/79/3/036401 10.1039/B512646K 10.1063/1.1652962 10.1063/1.1351844 10.1007/s003400050785 10.1126/science.262.5138.1386 10.1002/lpor.202200258 10.1016/0030-4018(84)90133-0 10.1109/JLT.2005.857768 10.1016/j.optcom.2023.129468 10.1109/3.53394 10.1088/1464-4258/1/6/302 10.1016/j.ijleo.2021.168546 10.1007/978-3-031-06197-4_1 10.1007/s11082-022-03667-y |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH |
DBID | 24P WIN AAYXX CITATION DOA |
DOI | 10.1002/apxr.202300053 |
DatabaseName | Wiley_OA刊 Wiley Free Archive CrossRef Directory of Open Access Journals(OpenAccess) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley_OA刊 url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2751-1200 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_2971f0d2cb9241b1b73c448a7326d60f 10_1002_apxr_202300053 APXR12136 |
Genre | article |
GrantInformation_xml | – fundername: Federal Ministry of Education and Research funderid: 13N15390 – fundername: European Research Council (ERC) funderid: 637367 |
GroupedDBID | 0R~ 24P 88I ABJCF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ KB. M2P PCBAR PDBOC PIMPY WIN AAYXX CITATION |
ID | FETCH-LOGICAL-c3216-ecbb5e83c3d5c86262b7d49cc947fff72556fc1863531da95db696397f71e4b13 |
IEDL.DBID | DOA |
ISSN | 2751-1200 |
IngestDate | Tue Oct 22 15:16:44 EDT 2024 Thu Sep 12 18:04:34 EDT 2024 Sat Aug 24 00:54:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3216-ecbb5e83c3d5c86262b7d49cc947fff72556fc1863531da95db696397f71e4b13 |
ORCID | 0000-0002-8728-8232 0000-0001-9416-4310 |
OpenAccessLink | https://doaj.org/article/2971f0d2cb9241b1b73c448a7326d60f |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2971f0d2cb9241b1b73c448a7326d60f crossref_primary_10_1002_apxr_202300053 wiley_primary_10_1002_apxr_202300053_APXR12136 |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-01-00 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationTitle | Advanced Physics Research |
PublicationYear | 2024 |
Publisher | Wiley-VCH |
Publisher_xml | – name: Wiley-VCH |
References | 1966; 152 2022; 252 2017; 7 2015; 5 2023; 17 2019; 1 2019; 13 1999; 69 2019; 36 1986; 16 2009 2020; 16 1975; 12 1993; 262 2000; 70 2006 1969; 15 2015; 106 1999; 1 1999; 5 1964; 258 2005; 23 2016; 79 2014; 22 1984; 51 2015; 23 2021; 38 2018; 3 1990; 26 1994; 19 2022 2020; 30 2017; 56 2019 1875; 50 2021; 274 2022; 54 2023; 537 2008; 112 1979; 20 2008; 992 2018; 99 2001; 78 2012; 20 2005; 13 2014; 53 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_48_1 Mayer G. (e_1_2_8_1_1) 1964; 258 e_1_2_8_3_1 e_1_2_8_2_1 Lide D. R. (e_1_2_8_46_1) 2009 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 12 start-page: 1036 year: 1975 publication-title: Phys. Rev. A – volume: 50 start-page: 337 year: 1875 publication-title: Lond. Edinb. Dubl. Phil. Mag. J. Sci. – volume: 19 start-page: 1040 year: 1994 publication-title: Opt. Lett. – year: 2009 – volume: 13 start-page: 7976 year: 2005 publication-title: Opt. Express – volume: 23 year: 2015 publication-title: Opt. Express – volume: 51 start-page: 433 year: 1984 publication-title: Opt. Commun. – volume: 5 start-page: 1385 year: 1999 publication-title: IEEE J. Sel. Top. Quantum Electron. – start-page: 131 year: 2006 publication-title: Chem. Commun. – volume: 78 start-page: 1484 year: 2001 publication-title: Appl. Phys. Lett. – volume: 537 year: 2023 publication-title: Opt. Commun. – volume: 23 start-page: 3606 year: 2005 publication-title: J. Lightwave Technol. – volume: 152 start-page: 149 year: 1966 publication-title: Phys. Rev. – volume: 69 start-page: 133 year: 1999 publication-title: Appl. Phys. B – start-page: 1 year: 2019 publication-title: PeerJ Phys. Chem. – volume: 54 start-page: 300 year: 2022 publication-title: Opt. Quantum Electron. – volume: 274 year: 2021 publication-title: J. Quant. Spectrosc. Radiat. Transfer – volume: 13 year: 2019 publication-title: Laser Photonics Rev. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 3 year: 2018 publication-title: Adv. Phys.: X – volume: 15 start-page: 192 year: 1969 publication-title: Appl. Phys. Lett. – volume: 38 start-page: 1104 year: 2021 publication-title: J. Opt. Soc. Am. B – volume: 258 start-page: 2039 year: 1964 publication-title: C. R. Hebd. Seances Acad Sci – volume: 99 start-page: 411 year: 2018 publication-title: Opt. Laser Technol. – volume: 53 year: 2014 publication-title: Jpn. J. Appl. Phys. – volume: 20 start-page: 2170 year: 1979 publication-title: Phys. Rev. A – volume: 16 year: 2020 publication-title: Small – volume: 20 start-page: 137 year: 2012 publication-title: Phys. Wave Phenom. – start-page: 1 year: 2022 end-page: 32 – volume: 56 start-page: 644 year: 2017 publication-title: Appl. Opt. – volume: 112 year: 2008 publication-title: J. Phys. Chem. B – volume: 262 start-page: 1386 year: 1993 publication-title: Science – volume: 992 start-page: 1183 year: 2008 publication-title: AIP Conf. Proc. – volume: 79 start-page: 0034 year: 2016 publication-title: Rep. Prog. Phys. – volume: 70 start-page: 587 year: 2000 publication-title: Appl. Phys. B – volume: 17 year: 2023 publication-title: Laser Photonics Rev. – volume: 252 year: 2022 publication-title: Optik – volume: 30 year: 2020 publication-title: Laser Phys. – volume: 16 start-page: 872 year: 1986 publication-title: Quantum Electron. – volume: 1 year: 2019 publication-title: PeerJ Phys. Chem. – volume: 1 start-page: 662 year: 1999 publication-title: J. Opt. A: Pure Appl. Opt. – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 38 start-page: 2019 year: 2021 publication-title: J. Opt. Soc. Am. B – volume: 1 start-page: 192 year: 1999 publication-title: J. Opt. A: Pure Appl. Opt. – volume: 36 start-page: 1246 year: 2019 publication-title: J. Opt. Soc. Am. B – volume: 106 year: 2015 publication-title: Appl. Phys. Lett. – volume: 26 start-page: 760 year: 1990 publication-title: IEEE J. Quantum Electron. – volume: 22 year: 2014 publication-title: Opt. Express – ident: e_1_2_8_21_1 doi: 10.7717/peerj-pchem.1 – ident: e_1_2_8_44_1 doi: 10.1364/JOSAB.420119 – ident: e_1_2_8_14_1 doi: 10.1103/PhysRevA.20.2170 – ident: e_1_2_8_12_1 doi: 10.1016/j.optlastec.2017.09.036 – ident: e_1_2_8_22_1 doi: 10.1039/C7RA07551K – ident: e_1_2_8_39_1 doi: 10.1364/AO.56.000644 – volume: 258 start-page: 2039 year: 1964 ident: e_1_2_8_1_1 publication-title: C. R. Hebd. Seances Acad Sci contributor: fullname: Mayer G. – ident: e_1_2_8_36_1 doi: 10.7567/JJAP.53.112702 – ident: e_1_2_8_20_1 doi: 10.1016/j.jqsrt.2021.107867 – ident: e_1_2_8_32_1 doi: 10.1063/1.2926815 – ident: e_1_2_8_6_1 doi: 10.1109/2944.806765 – ident: e_1_2_8_17_1 doi: 10.1038/srep17899 – ident: e_1_2_8_38_1 doi: 10.1364/JOSAB.36.001246 – ident: e_1_2_8_5_1 doi: 10.1021/jp807730u – ident: e_1_2_8_29_1 doi: 10.1103/PhysRevA.12.1036 – ident: e_1_2_8_31_1 doi: 10.1088/1464-4258/1/2/013 – ident: e_1_2_8_43_1 doi: 10.1364/OE.23.024171 – ident: e_1_2_8_26_1 doi: 10.1088/1555-6611/ab6f09 – ident: e_1_2_8_42_1 doi: 10.3103/S1541308X12020082 – ident: e_1_2_8_16_1 doi: 10.1364/JOSAB.418635 – ident: e_1_2_8_24_1 doi: 10.1080/23746149.2017.1367628 – ident: e_1_2_8_33_1 doi: 10.1364/OE.22.023955 – ident: e_1_2_8_18_1 doi: 10.1002/smll.202002252 – ident: e_1_2_8_2_1 doi: 10.1080/14786447508641302 – ident: e_1_2_8_40_1 doi: 10.1063/1.4907254 – ident: e_1_2_8_10_1 doi: 10.1002/lpor.201800282 – ident: e_1_2_8_35_1 doi: 10.1364/OPEX.13.007976 – ident: e_1_2_8_45_1 doi: 10.1070/QE1986v016n07ABEH007187 – ident: e_1_2_8_9_1 doi: 10.1364/OL.19.001040 – ident: e_1_2_8_47_1 doi: 10.1007/s003400050866 – ident: e_1_2_8_28_1 doi: 10.1103/PhysRev.152.149 – ident: e_1_2_8_11_1 doi: 10.1088/0034-4885/79/3/036401 – ident: e_1_2_8_23_1 doi: 10.1039/B512646K – ident: e_1_2_8_3_1 doi: 10.1063/1.1652962 – ident: e_1_2_8_25_1 doi: 10.1063/1.1351844 – ident: e_1_2_8_34_1 doi: 10.1007/s003400050785 – ident: e_1_2_8_4_1 doi: 10.1126/science.262.5138.1386 – ident: e_1_2_8_8_1 doi: 10.1002/lpor.202200258 – ident: e_1_2_8_13_1 doi: 10.7717/peerj-pchem.1 – ident: e_1_2_8_30_1 doi: 10.1016/0030-4018(84)90133-0 – ident: e_1_2_8_7_1 doi: 10.1109/JLT.2005.857768 – ident: e_1_2_8_37_1 doi: 10.1016/j.optcom.2023.129468 – ident: e_1_2_8_41_1 doi: 10.1109/3.53394 – ident: e_1_2_8_48_1 doi: 10.1088/1464-4258/1/6/302 – volume-title: CRC Handbook of Chemistry and Physics year: 2009 ident: e_1_2_8_46_1 contributor: fullname: Lide D. R. – ident: e_1_2_8_19_1 doi: 10.1016/j.ijleo.2021.168546 – ident: e_1_2_8_15_1 doi: 10.1007/978-3-031-06197-4_1 – ident: e_1_2_8_27_1 doi: 10.1007/s11082-022-03667-y |
SSID | ssj0002891341 |
Score | 2.3055704 |
Snippet | Thermal effects are inevitable when an absorptive nonlinear optical material interacts with long pulse duration or high repetition rate laser pulses. It... Abstract Thermal effects are inevitable when an absorptive nonlinear optical material interacts with long pulse duration or high repetition rate laser pulses.... Abstract Thermal effects are inevitable when an absorptive nonlinear optical material interacts with long pulse duration or high repetition rate laser pulses.... |
SourceID | doaj crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | electrical stirring nonlinear refractive index optical Kerr effect self‐focusing systems thermal lens |
SummonAdditionalLinks | – databaseName: Wiley_OA刊 dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeDzosXUVScv8hB8FTWpGnTHOfYEME5xMEuUppfMpBudBPEv968pKvuJNJbaFr68uubl77PQ-hGCXdlxkRUsDRiWieREDyOpDVCSSqM4RAo_DjO7qfsYZbOfkXxBz5E63CDkeHnaxjgpVz1fqCh5fITeJ5OQkNH2kV7gI0Bej5lk9bLQuEUzqevpDwlEXF9YkNujGlv-xFbK5MH-G8LVr_ijA7RQSMVcT-07RHaMdUxeh36vDVzhQfhJ3O8sNi1tZtf30NRk8BqhdcL7NQdHoePLWv8tPSOazwBB3wNJFWoPJ77kKDqy816J2g6Gr4M7qMmRUKkEkqyyCgpU5MnKtGpgs0JlVwzoZRg3FrLATBmFcmdrEiILkWqZSbgLM9yYpgkySnqVIvKnCGc61TGucmUEIopLfPMEKl4zGwaax3nXXS7MU-xDCSMIjCPaQGGLFpDdtEdWK-9CwjWvmBRvxXNgCio4MTGmirpdoBEEskT5baKJXd6Umex7aLQ-n-8q-hPZs-ApcvO_1vhAu27Uhb8KZeos64_zJVTGGt57TvRN-2YyjU priority: 102 providerName: Wiley-Blackwell |
Title | Electric Control of Thermal Contributions to the Nonlinear Optical Properties of Nitrobenzene |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202300053 https://doaj.org/article/2971f0d2cb9241b1b73c448a7326d60f |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86L15EUXF-jBwET3VJmjbNcRsbQ7CW4WAXKc0XTKQbc4L415uPbmwnL9JbaJrye-Hl916S3wPgXnL7pFpHhNMkokrFEecMRcJoLgXhWjN3Ufg5T8dT-jRLZjulvtyZsCAPHIDrEs6wQYpIYSMFLLBgsbQhRcUs71ApMt77Ir4TTL2H7TOnVLZRaUSkWy2_nfynZdxu3u2tQl6sf5-c-tVldApOGloIe-F3zsCBrs_B29DXqJlLOAgHyuHCQGtX60s_QlNTrOoTrhfQMjmYB-GLagVflj5JDQuXbF851VTXOZ_76z_1j_VwF2A6Gr4OxlFTDiGSMcFppKUQic5iGatEukCECKYol5JTZoxhTkzMSJxZChFjVfFEiZS7fTvDsKYCx5egVS9qfQVgphKBMp1KziWVSmSpxkIyRE2ClEJZGzxs4CmXQfWiDPrGpHRAllsg26Dv0Nu-5dSqfYO1YdnYsPzLhm3w6LH_Y6yyV8wmToIuvf6PUW_Asf00DfmUW9Bar770nWUYa9EBh4QWHXDUH-bFpOOn1i9RPM-- |
link.rule.ids | 315,783,787,867,2109,11574,27936,27937,46064,46488,50826,50935 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3oRRcX6zEHwtHSTzSabYy0tVdtapAUvsjQvKUhbagXx15tJ2kpPInsLyS47r3yZJN8gdKOlf7i1CZUsT5gxWSKlSBPlrNSKSmsFXBTu9nh7yB5e8tVpQrgLE_kh1gk38IwQr8HBISFd-2UNHc2-gNDTY2iwpG20w7i3RiB3Zv11moXCNlyoX0lFThLijWJF3ZjS2uYrNqamwOC_iVjDlNM6QPtLrIjrUbmHaMtOjtBrMxSuGWvciKfM8dRhr2wfYN9j07KC1QdeTLGHd7gX_3Y0x0-zkLnGfcjAz4FKFQb3xuFO0OTbh71jNGw1B412sqyRkOiMEp5YrVRui0xnJtewOqFKGCa1lkw45wQwjDlNCo8rMmJGMjeKS9jMc4JYpkh2giqT6cSeIlyYXKWF5VpKzbRRBbdEaZEyl6fGpEUV3a7EU84iFUYZSY9pCYIs14KsojuQ3roXUFiHhun8rVx6REmlIC41VCu_BCSKKJFpv1YcCQ8oDU9dFUX1__Gtst5_eQZeOn723wHXaLc96HbKzn3v8Rzt-R4sJlcuUGUx_7SXHm4s1FUwqB_7_c2p |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6gfgiiorzMw-CT2VNmjTN45wbftYhToYgZfmSgbRjThD_epOmq-5JpG8haend5fK7S_I7AE4lt0-sdYA5oQFRKgo4Z2EgjOZSYK41cxeF79L4ckiuR3T06xa_54eoE25uZpT-2k3wqTLtH9LQ8fTT8XlaCO0MaRU0LdTA1sabnafh87DOs2C3D1cWsMSMogBZq1hwN4a4vfySpbWppPBfhqzlmtPfBBsVWIQdr90tsKLzbfDSKyvXTCTs-mPmsDDQatt62DffVJWweofzAlp8B1P_u-MZvJ-WqWs4cCn4meNSdYPTSXkpKP-yfm8HDPu9x-5lUBVJCGSEURxoKQTVSSQjRaULT7BginApOWHGGOYoxoxEiQUWEVJjTpWIudvNMwxpIlC0Cxp5kes9ABNFRZjoWHIuiVQiiTUSkoXE0FCpMGmBs4V4sqnnwsg86zHOnCCzWpAtcO6kV_dyHNZlQzF7zaopkWHOkAkVlsLGgEggwSJpg8Uxs4hSxaFpAa__P76VdQajB0dMF-__d8AJWBtc9LPbq_TmAKzbDsQnVw5BYz770EcWbszFcWVR38c2zpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electric+Control+of+Thermal+Contributions+to+the+Nonlinear+Optical+Properties+of+Nitrobenzene&rft.jtitle=Advanced+Physics+Research&rft.au=Bongu%2C+Sudhakara+Reddy&rft.au=Buchm%C3%BCller%2C+Maximilian&rft.au=Neumaier%2C+Daniel&rft.au=G%C3%B6rrn%2C+Patrick&rft.date=2024-01-01&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=3&rft.issue=1&rft_id=info:doi/10.1002%2Fapxr.202300053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_apxr_202300053 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon |