Manganese borohydride; synthesis and characterization

Solvent-based synthesis and characterization of α-Mn(BH4)2 and a new nanoporous polymorph of manganese borohydride, γ-Mn(BH4)2, via a new solvate precursor, Mn(BH4)2·1/2S(CH3)2, is presented. Manganese chloride is reacted with lithium borohydride in a toluene/dimethylsulfide mixture at room temperat...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 44; no. 9; pp. 3988 - 3996
Main Authors Richter, Bo, Ravnsbæk, Dorthe B, Tumanov, Nikolay, Filinchuk, Yaroslav, Jensen, Torben R
Format Journal Article
LanguageEnglish
Published England 07.03.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Solvent-based synthesis and characterization of α-Mn(BH4)2 and a new nanoporous polymorph of manganese borohydride, γ-Mn(BH4)2, via a new solvate precursor, Mn(BH4)2·1/2S(CH3)2, is presented. Manganese chloride is reacted with lithium borohydride in a toluene/dimethylsulfide mixture at room temperature, which yields halide and solvent-free manganese borohydride after extraction with dimethylsulfide (DMS) and subsequent removal of residual solvent. This work constitutes the first example of establishing a successful, reproducible solvent-based synthesis route for a pure, crystalline, stable transition metal borohydride. The new polymorph, γ-Mn(BH4)2, is shown to be the manganese counterpart of the zeolite-like compound, γ-Mg(BH4)2 (cubic, a = 16.209(1) Å, space group Id3̄a). It is verified that large pores (diameter > 6.0 Å) exist in this structure. The solvate, Mn(BH4)2·1/2S(CH3)2, is subsequently shown to be the analogue of Mg(BH4)2·1/2S(CH3)2. As the structural analogies between Mg(BH4)2 and Mn(BH4)2 became evident a new polymorph of Mg(BH4)2 was identified and termed ζ-Mg(BH4)2. ζ-Mg(BH4)2 is the structural counterpart of α-Mn(BH4)2. All synthesis products are characterized employing synchrotron radiation-powder X-ray diffraction, infrared spectroscopy and thermogravimetric analysis in combination with mass spectroscopy. Thermal analysis reveals the decomposition of Mn(BH4)2 to occur at 160 °C, accompanied by a mass loss of 14.8 wt%. A small quantity of the desorbed gaseous species is identified as diborane (ρ(m)(Mn(BH4)2) = 9.5 wt% H2), while the remaining majority is found to be hydrogen.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1477-9226
1477-9234
DOI:10.1039/c4dt03501a