Normalized Laplacian Eigenvalues and Energy of Trees

LetGbe a graph with vertex setV(G) = {v 1,v 2, …,vn } and edge setE(G). For any vertexvi ∈V(G), letdi denote the degree ofvi . The normalized Laplacian matrix of the graphGis the matrix ℒ = (ℒ ij ) given by ℒ i j = { 1 − 1 d i d j 0 if i = j and d i ≠ 0 if v i v j ∈ E ( G ) otherwise . In this paper...

Full description

Saved in:
Bibliographic Details
Published inTaiwanese journal of mathematics Vol. 20; no. 3; pp. 491 - 507
Main Authors Das, Kinkar Ch, Sun, Shaowei
Format Journal Article
LanguageEnglish
Published Mathematical Society of the Republic of China 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:LetGbe a graph with vertex setV(G) = {v 1,v 2, …,vn } and edge setE(G). For any vertexvi ∈V(G), letdi denote the degree ofvi . The normalized Laplacian matrix of the graphGis the matrix ℒ = (ℒ ij ) given by ℒ i j = { 1 − 1 d i d j 0 if i = j and d i ≠ 0 if v i v j ∈ E ( G ) otherwise . In this paper, we obtain some bounds on the second smallest normalized Laplacian eigenvalue of treeTin terms of graph parameters and characterize the extremal trees. Utilizing these results we present some lower bounds on the normalized Laplacian energy (or Randić energy) of treeTand characterize trees for which the bound is attained. 2010Mathematics Subject Classification. 05C50. Key words and phrases. Tree, Normalized Laplacian matrix, Normalized Laplacian eigenvalues, Normalized Laplacian energy.
ISSN:1027-5487
2224-6851
DOI:10.11650/tjm.20.2016.6668