Freeform illumination optics for 3D targets through a virtual irradiance transport
Freeform illumination optics design for 3D target surfaces is a challenging and rewarding issue. The current researches on freeform illumination optics are mostly involved in planar targets, especially for the cases where the targets are perpendicular to the optical axis. Here, we propose a general...
Saved in:
Published in | Optics express Vol. 29; no. 10; pp. 15382 - 15392 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
10.05.2021
|
Online Access | Get full text |
Cover
Loading…
Summary: | Freeform illumination optics design for 3D target surfaces is a challenging and rewarding issue. The current researches on freeform illumination optics are mostly involved in planar targets, especially for the cases where the targets are perpendicular to the optical axis. Here, we propose a general method to design freeform optics for illuminating 3D target surfaces for zero-étendue sources. In this method, we employ a virtual observation plane which is perpendicular to the optical axis and transfer the irradiance on the 3D target surface to this virtual plane. By designing freeform optics to generate the transferred irradiance distribution, the prescribed irradiance distribution on the 3D target can be realized automatically. The influence of the freeform optics size is considered in the optics design process, which makes it possible to design illumination system for near-field configuration where the influence of the freeform optics size cannot be ignored. We demonstrate the robustness and elegance of the proposed method with three design examples. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.422919 |