Estimation of dehumidifying performance of solid polymer electrolytic dehumidifier for practical application

A two-layer model for a solid polymer electrolytic (SPE) dehumidifier is applied to a system in which the chamber to be dehumidified has some leakage area. By introducing this area, the attainable humidity in the chamber, which is the steady-state humidity to be attained after a long-time dehumidifi...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied electrochemistry Vol. 40; no. 12; pp. 2153 - 2160
Main Authors Sakuma, Shuichi, Yamauchi, Shiro, Takai, Osamu
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A two-layer model for a solid polymer electrolytic (SPE) dehumidifier is applied to a system in which the chamber to be dehumidified has some leakage area. By introducing this area, the attainable humidity in the chamber, which is the steady-state humidity to be attained after a long-time dehumidification, can be defined. Experimental results of dehumidification by an SPE dehumidifier are compared to the calculations based on the two-layer model for the SPE dehumidifier, which was presented in our previous paper. Equations for the two-layer model are simplified by making use of assumptions for the current characteristics and a constant environmental condition, and it is reduced to equations including a differential equation on the time variation of the humidity in the chamber. The differential equation to describe the attainable humidity in the chamber and time constant for the dehumidification is obtained. The current flowing in the dehumidifier under steady state conditions is also given as a function of the humidities in the spaces facing the anode and the cathode. A diagram to estimate the attainable humidity and the time required for dehumidification from the dehumidifying area and leakage area is also given.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-891X
1572-8838
DOI:10.1007/s10800-010-0197-4