Efficiency Optimizing Control of Induction Motor Using Natural Variables

This paper presents a new approach of optimizing the efficiency of induction-motor drives through minimizing the copper and core losses. The induction-machine model, which accounts for the varying core-loss resistance and saturation dependent magnetizing inductance, uses natural and reference frame...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 53; no. 6; pp. 1791 - 1798
Main Authors Gan Dong, Ojo, O.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a new approach of optimizing the efficiency of induction-motor drives through minimizing the copper and core losses. The induction-machine model, which accounts for the varying core-loss resistance and saturation dependent magnetizing inductance, uses natural and reference frame independent quantities as state variables. Utilization of the nonlinear geometric control methodology of input-output linearization with decoupling permits the implementation of the control in the stationary reference frame. This approach eliminates the need of synchronous reference transformation and flux alignment required in classical vector control schemes. The new efficiency optimizing formulation yields a reference rotor flux, which ensures a minimum loss and yields an improved efficiency of the drive system especially when driving part load. The proposed scheme and its advantages are demonstrated both by computer simulations and some experimental results for motor speed control
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2006.885117