Observation of primary scintillations in the visible range in liquid argon doped with methane
Neutron veto detector based on liquid scintillator containing hydrogen atoms is an integral part of any underground experiment for dark matter search. So far, a flammable mixture of liquid hydrocarbons was used as a liquid scintillator in such detectors. A safe alternative might be a liquid scintill...
Saved in:
Published in | Journal of instrumentation Vol. 15; no. 6; p. C06053 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Neutron veto detector based on liquid scintillator containing hydrogen atoms is an integral part of any underground experiment for dark matter search. So far, a flammable mixture of liquid hydrocarbons was used as a liquid scintillator in such detectors. A safe alternative might be a liquid scintillator based on liquid argon doped with methane. In this work, we have studied the primary scintillations in pure liquid argon and its mixtures with methane, the CH4 content varying from 100 ppm to 5%. The primary scintillations have for the first time been observed in liquid argon doped with methane, in the visible and near infrared range, and their relative light yields have been measured as a function of the CH4 content. |
---|---|
ISSN: | 1748-0221 1748-0221 |
DOI: | 10.1088/1748-0221/15/06/C06053 |