Analysis of sex chromosome aneuploidy in sperm from fathers of Turner syndrome patients

Numerical sex chromosome abnormalities were analyzed in sperm from four fathers of Turner syndrome patients of paternal origin to determine whether there was an increased frequency of sex chromosome aneuploidy and to elucidate whether meiotic malsegregation mechanisms could be involved in the origin...

Full description

Saved in:
Bibliographic Details
Published inHuman genetics Vol. 104; no. 4; pp. 345 - 349
Main Authors MARTINEZ-PASARELL, O, NOGUES, C, BOSCH, M, EGOZCUE, J, TEMPLADO, C
Format Journal Article
LanguageEnglish
Published Heidelberg Springer 01.04.1999
Berlin
New York, NY
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Numerical sex chromosome abnormalities were analyzed in sperm from four fathers of Turner syndrome patients of paternal origin to determine whether there was an increased frequency of sex chromosome aneuploidy and to elucidate whether meiotic malsegregation mechanisms could be involved in the origin of Turner syndrome. Determination of the parental origin of the single X chromosome (maternal in all four cases) and exclusion of X and Y mosaicism were carried out by polymerase chain reaction amplification of five X chromosome polymorphisms and three Y chromosome segments. A total of 45,299 sperm nuclei from Turner fathers and 85,423 sperm nuclei from eight control donors was analyzed by three-color fluorescence in situ hybridization. The four patients showed a significant increase in the percentages of XY sperm (mean 0.22%; range 0.20% to 0.22%) compared with control donors (mean 0.11%; range 0.06% to 0.18%). These results suggest that the four individuals have an increased frequency of nondisjunctional errors in meiosis I, resulting in the production of an increased proportion of XY spermatozoa and of sperm lacking a sex chromosome.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0340-6717
1432-1203
DOI:10.1007/s004390050964