Molecular mechanisms of heavy metal resistance and cross-/co-resistance to antibiotics in Pseudomonas aeruginosa
Heavy metal pollution is a growing environmental and public health concern, particularly due to its impact on microbial communities. Pseudomonas aeruginosa, a highly adaptable bacterium, has developed resistance to heavy metals (HMs), which is closely linked to antibiotic resistance through shared g...
Saved in:
Published in | Letters in applied microbiology Vol. 78; no. 7 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1472-765X 0266-8254 1472-765X |
DOI | 10.1093/lambio/ovaf094 |
Cover
Summary: | Heavy metal pollution is a growing environmental and public health concern, particularly due to its impact on microbial communities. Pseudomonas aeruginosa, a highly adaptable bacterium, has developed resistance to heavy metals (HMs), which is closely linked to antibiotic resistance through shared genetic and regulatory pathways. This co-resistance poses significant challenges for environmental health and antimicrobial management. Additionally, microplastics act as carriers for HMs and antibiotics, creating a compounded pollution stressor that further influences bacterial resistance patterns. This review explores the molecular mechanisms by which P. aeruginosa resists heavy metal toxicity, focusing on key adaptive strategies such as efflux systems, biofilm formation, enzymatic detoxification, and genetic modifications. These mechanisms enhance bacterial survival in contaminated environments, allowing P. aeruginosa to persist and contribute to the spread of resistance genes. The interplay between HMs, antibiotics, and microplastics underscores the complexity of pollution-driven bacterial adaptation. Addressing these issues requires a multidisciplinary approach that integrates environmental pollution control and antimicrobial resistance management. Understanding how P. aeruginosa thrives under such stress conditions is crucial for developing effective strategies to mitigate the risks associated with heavy metal contamination, antibiotic resistance, and microplastic pollution in both natural and clinical ecosystems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1472-765X 0266-8254 1472-765X |
DOI: | 10.1093/lambio/ovaf094 |