Microstructure Evolution and Mechanical Properties of Novel γ/γ′ Two-Phase Strengthened Ir-Based Superalloys
Ir-based superalloys are irreplaceable in some specific harsh conditions regardless of their cost and high density. In order to develop a new class of Ir-based superalloy for future ultrahigh-temperature applications, the microstructure evolution, phase relationships, and mechanical properties of Ir...
Saved in:
Published in | Metals (Basel ) Vol. 9; no. 11; p. 1171 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ir-based superalloys are irreplaceable in some specific harsh conditions regardless of their cost and high density. In order to develop a new class of Ir-based superalloy for future ultrahigh-temperature applications, the microstructure evolution, phase relationships, and mechanical properties of Ir–Al–W–Ta alloys with γ/γ′ two-phase structure were investigated. Room- and high-temperature compressions at 1300 °C, and room-temperature nanoindentation for the Ta-containing Ir–6Al–13W alloys were conducted. The results show that the addition of Ta can significantly improve the high-temperature mechanical properties, but does not change the fracture mode of the Ir-based two-phase superalloys. The compressive strength of quaternary alloys can be attributed to the precipitation of γ′-Ir3(Al, W) phase and solid solution strengthening. The microstructure and mechanical properties of Ir–Al–W–Ta quaternary alloys exhibit promising characteristics for the development of high-temperature materials. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met9111171 |