Light-field depth estimation considering plenoptic imaging distortion

Light-field imaging can simultaneously record spatio-angular information of light rays to carry out depth estimation via depth cues which reflect a coupling of the angular information and the scene depth. However, the unavoidable imaging distortion in a light-field imaging system has a side effect o...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 28; no. 3; pp. 4156 - 4168
Main Authors Cai, Zewei, Liu, Xiaoli, Pedrini, Giancarlo, Osten, Wolfgang, Peng, Xiang
Format Journal Article
LanguageEnglish
Published United States 03.02.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:Light-field imaging can simultaneously record spatio-angular information of light rays to carry out depth estimation via depth cues which reflect a coupling of the angular information and the scene depth. However, the unavoidable imaging distortion in a light-field imaging system has a side effect on the spatio-angular coordinate computation, leading to incorrectly estimated depth maps. Based on the previously established unfocused plenoptic metric model, this paper reports a study on the effect of the plenoptic imaging distortion on the light-field depth estimation. A method of light-field depth estimation considering the plenoptic imaging distortion is proposed. Besides, the accuracy analysis of the light-field depth estimation was performed by using standard components. Experimental results demonstrate that efficiently compensating the plenoptic imaging distortion results in a six-fold improvement in measuring accuracy and more consistency across the measuring depth range. Consequently, the proposed method is proved to be suitable for light-field depth estimation and three-dimensional measurement with high quality, enabling unfocused plenoptic cameras to be metrological tools in the potential application scenarios such as industry, biomedicine, entertainment, and many others.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.385285