Essentials of resonance-enhanced soliton-based supercontinuum generation

Supercontinuum generation is a key process for nonlinear tailored light generation and strongly depends on the dispersion of the underlying waveguide. Here we reveal the nonlinear dynamics of soliton-based supercontinuum generation in case the waveguide includes a strongly dispersive resonance. Assu...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 28; no. 2; pp. 2557 - 2571
Main Authors Qi, Xue, Schaarschmidt, Kay, Chemnitz, Mario, Schmidt, Markus A
Format Journal Article
LanguageEnglish
Published United States 20.01.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:Supercontinuum generation is a key process for nonlinear tailored light generation and strongly depends on the dispersion of the underlying waveguide. Here we reveal the nonlinear dynamics of soliton-based supercontinuum generation in case the waveguide includes a strongly dispersive resonance. Assuming a gas-filled hollow core fiber that includes a Lorentzian-type dispersion term, effects such as multi-color dispersive wave emission and cascaded four-wave mixing have been identified to be the origin of the observed spectral broadening, greatly exceeding the bandwidths of corresponding non-resonant fibers. Moreover, we obtain large spectral bandwidth at low soliton numbers, yielding broadband spectra within the coherence limit. Due to the mentioned advantages, we believe the concept of resonance-enhanced supercontinuum generation to be highly relevant for future nonlinear light sources.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.382158