Super-resolution single-photon imaging at 8.2 kilometers

Single-photon light detection and ranging (LiDAR), offering single-photon sensitivity and picosecond time resolution, has been widely adopted for active imaging applications. Long-range active imaging is a great challenge, because the spatial resolution degrades significantly with the imaging range...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 28; no. 3; p. 4076
Main Authors Li, Zheng-Ping, Huang, Xin, Jiang, Peng-Yu, Hong, Yu, Yu, Chao, Cao, Yuan, Zhang, Jun, Xu, Feihu, Jian-Wei Pan, and
Format Journal Article
LanguageEnglish
Published United States 03.02.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:Single-photon light detection and ranging (LiDAR), offering single-photon sensitivity and picosecond time resolution, has been widely adopted for active imaging applications. Long-range active imaging is a great challenge, because the spatial resolution degrades significantly with the imaging range due to the diffraction limit of the optics, and only weak echo signal photons can return but mixed with a strong background noise. Here we propose and demonstrate a photon-efficient LiDAR approach that can achieve sub-Rayleigh resolution imaging over long ranges. This approach exploits fine sub-pixel scanning and a deconvolution algorithm tailored to this long-range application. Using this approach, we experimentally demonstrated active three-dimensional (3D) single-photon imaging by recognizing different postures of a mannequin model at a stand-off distance of 8.2 km in both daylight and night. The observed spatial (transversal) resolution is ∼5.5 cm at 8.2 km, which is about twice of the system’s resolution. This also beats the optical system’s Rayleigh criterion. The results are valuable for geosciences and target recognition over long ranges.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.383456