High throughput first-principles calculations of bixbyite oxides for TCO applications
We present a high-throughput computing scheme based on density functional theory (DFT) to generate a class of oxides and screen them with the aim of identifying those that might be electronically appropriate for transparent conducting oxide (TCO) applications. The screening criteria used are a minim...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 16; no. 33; pp. 17724 - 17733 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
07.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present a high-throughput computing scheme based on density functional theory (DFT) to generate a class of oxides and screen them with the aim of identifying those that might be electronically appropriate for transparent conducting oxide (TCO) applications. The screening criteria used are a minimum band gap to ensure sufficient transparency, a band edge alignment consistent with easy n- or p-type dopability, and a minimum thermodynamic phase stability to be experimentally synthesizable. Following this scheme we screened 23 binary and 1518 ternary bixbyite oxides in order to identify promising candidates, which can then be a subject of an in-depth study. The results for the known TCOs are in good agreement with the reported data in the literature. We suggest a list of several new potential TCOs, including both n- and p-type compounds. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 1463-9076 1463-9084 1463-9084 |
DOI: | 10.1039/C4CP02788D |