Bilinear observer-based robust adaptive fault estimation for multizone building VAV terminal units

In this paper, we propose a novel bilinear observer-based robust fault detection, isolation and adaptive fault estimation methodology to precisely estimate a class of actuator faults, namely bias in damper position and lock-in-place faults, in Variable-Air-Volume (VAV) terminal units of Heating Vent...

Full description

Saved in:
Bibliographic Details
Published inJournal of building performance simulation Vol. 16; no. 6; pp. 717 - 733
Main Authors Subramaniam A., Mona, Jain, Tushar, Yamé, Joseph J.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.11.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we propose a novel bilinear observer-based robust fault detection, isolation and adaptive fault estimation methodology to precisely estimate a class of actuator faults, namely bias in damper position and lock-in-place faults, in Variable-Air-Volume (VAV) terminal units of Heating Ventilation and Air-Conditioning (HVAC) systems. The proposed adaptive fault estimator is robust in the sense that the fault estimates are not affected by the unmeasured disturbance variable and that the effects of measurement noises on fault estimates are attenuated. The fault estimation algorithm with the integrated building control system improves occupants comfort and reduces the operation, maintenance, and utility cost, thereby reducing the impact on the environment. The effectiveness of the methodology for adaptive estimation of multiple or single VAV damper faults is successfully demonstrated through different simulation scenarios with SIMBAD (SIMulator of Building And Devices), which is being used in industries for testing and validation of building energy management systems.
ISSN:1940-1493
1940-1507
DOI:10.1080/19401493.2023.2196971