Macro Level Modeling of a Tubular Solid Oxide Fuel Cell

This paper presents a macro-level model of a solid oxide fuel cell (SOFC) stack implemented in Aspen Plus® for the simulation of SOFC system. The model is 0-dimensional and accepts hydrocarbon fuels such as reformed natural gas, with user inputs of current density, fuel and air composition, flow rat...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 2; no. 11; pp. 3549 - 3560
Main Authors Koksal, Murat, Fung, Alan, Suther, Torgeir, Zabihian, Farshid
Format Journal Article
LanguageEnglish
Published Basel MDPI, Open Access Journal 01.11.2010
MDPI AG
SeriesSustainability
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a macro-level model of a solid oxide fuel cell (SOFC) stack implemented in Aspen Plus® for the simulation of SOFC system. The model is 0-dimensional and accepts hydrocarbon fuels such as reformed natural gas, with user inputs of current density, fuel and air composition, flow rates, temperature, pressure, and fuel utilization factor. The model outputs the composition of the exhaust, work produced, heat available for the fuel reformer, and electrochemical properties of SOFC for model validation. It was developed considering the activation, concentration, and ohmic losses to be the main over-potentials within the SOFC, and mathematical expressions for these were chosen based on available studies in the literature. The model also considered the water shift reaction of CO and the methane reforming reaction. The model results were validated using experimental data from Siemens Westinghouse. The results showed that the model could capture the operating pressure and temperature dependency of the SOFC performance successfully in an operating range of 1–15 atm for pressure and 900 °C–1,000 °C for temperature. Furthermore, a sensitivity analysis was performed to identify the model constants and input parameters that impacted the over-potentials.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:2071-1050
2071-1050
DOI:10.3390/su2113549