Fluorescence In Situ Hybridization-Based Chromosome Aberration Analysis Unveils the Mechanistic Basis for Boron-Neutron Capture Therapy’s Radiobiological Effectiveness
Boron-Neutron Capture Therapy (BNCT) is a tumor-selective radiotherapy, based on the nuclear capture reaction 10B(n,α)7Li producing short range α-particles and recoiling 7Li nuclei exclusively confined to boron-enriched cancer cells. These particles possess high Linear Energy Transfer (LET) and main...
Saved in:
Published in | Applied sciences Vol. 14; no. 3; p. 1171 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Boron-Neutron Capture Therapy (BNCT) is a tumor-selective radiotherapy, based on the nuclear capture reaction 10B(n,α)7Li producing short range α-particles and recoiling 7Li nuclei exclusively confined to boron-enriched cancer cells. These particles possess high Linear Energy Transfer (LET) and mainly generate clustered DNA strand breaks, which are less faithfully restored by intracellular repair. Mis-rejoined breaks yield chromosome aberrations (CAs), which, for high-LET radiation, are more complex in nature than after sparsely ionizing photons/electrons used in conventional radiotherapy, which leads to increased cell-killing ability. However, such a radiobiological tenet of BNCT has been scantily studied at the DNA level. Therefore, the aim of this work was to evaluate CAs induced by BNCT in comparison to X-rays in genomically stable normal human epithelial mammary MCF10A cells. Two Fluorescence In Situ Hybridization (FISH)-based techniques were applied to calyculin A-induced prematurely condensed chromosomes: Whole Chromosome Painting and multicolor(m)-FISH. Not only did BNCT induce a greater CA frequency than X-ray irradiation, but m-FISH karyotype-wide analysis confirmed that CAs following BNCT exhibited a much higher degree of complexity compared to X-rays. To our knowledge, this is the first time that such evidence supporting the radiobiological superiority of BNCT has been shown. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app14031171 |