Biosynthesis of Ag@CuO core–shell nanostructures for non-enzymatic glucose sensing using screen-printed electrode

Ag@CuO core shell nanostructures (ACCS NSs) was successfully synthesized using Ocimum tenuiflorum leaf extract when applied for non-enzymatic glucose sensor. SEM, HR-TEM, XRD, UV–vis, and FTIR were used to estimate the structural, optical and morphological properties of ACCS NSs. Cyclic voltammetry...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 30; no. 10; pp. 9725 - 9734
Main Authors Dayakar, T., Venkateswara Rao, K., Park, Jinsub, Krishna, Potharaju, Swaroopa, P., Ji, Yuexing
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ag@CuO core shell nanostructures (ACCS NSs) was successfully synthesized using Ocimum tenuiflorum leaf extract when applied for non-enzymatic glucose sensor. SEM, HR-TEM, XRD, UV–vis, and FTIR were used to estimate the structural, optical and morphological properties of ACCS NSs. Cyclic voltammetry and ampherometry were used to determine the electrochemical and electrocatalytic characteristics of 0.2 wt% ACCS NSs with screen-printed electrodes (SPEs) to sense glucose in 0.1 M NaOH solution. Optimum potential was obtained at + 0.4 V of current response with a linear range of 1 to 9.2 mM. In addition, 0.2 wt% ACCS NSs with SPEs had a low detection limit of 0.006 μM and sensitivity of 3763.44 μA mM −1  cm −2 . Modified ACCS/SPE electrodes were highly selective for glucose in the presence of chlorine ions, sugars and non-sugar compounds. It could be inferred from the evidence that the ACCS NSs performs effectively in the aspect of non-enzymatic glucose sensing.
ISSN:0957-4522
1573-482X
DOI:10.1007/s10854-019-01307-y