Electrodeposition of Duplex Ni–B–Zn/Co Composite Coatings

This research article focusses on the Ni–B–Zn/Co composite coatings synthesized via an electrodeposition process. Electrodeposited Ni–B composite coatings have several advantages, such as excellent corrosion as well as wear resistance and high hardness in the as-deposited condition. We studied the i...

Full description

Saved in:
Bibliographic Details
Published inJOM (1989) Vol. 72; no. 12; pp. 4296 - 4304
Main Authors Walunj, Ganesh, Waware, Umesh Somaji, Hamouda, A. M. S., Borkar, Tushar
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This research article focusses on the Ni–B–Zn/Co composite coatings synthesized via an electrodeposition process. Electrodeposited Ni–B composite coatings have several advantages, such as excellent corrosion as well as wear resistance and high hardness in the as-deposited condition. We studied the influence of Zn/Co addition on microstructure, phase evolution, mechanical (hardness and wear resistance), and corrosion behavior of electrodeposited Ni–B–Zn/Co composite coatings. The Ni–B–Zn/Co composite coatings exhibited significant improvements in microhardness (by 90%) as well as in elastic modulus (by 100%) in comparison with electrodeposited Ni–B coatings. Both scanning electron microscopy (SEM) and x-ray diffraction (XRD) analyses showed significant improvement in grain sizes in Ni–B–Zn/Co composite coatings compared with Ni–B coatings. This grain refinement in composite coatings is primarily attributed to the addition as well as uniform dispersion of Zn/Co within the Ni–B matrix. The Ni–B–Zn/Co coatings exhibited far better corrosion resistance and mechanical properties than Ni–B coatings.
ISSN:1047-4838
1543-1851
DOI:10.1007/s11837-020-04247-9