Investigation of Internal Cracks in Epoxy-Alumina Using In Situ Mechanical Testing Coupled with Micro-CT

Polymer-ceramic composites are widely used in biomedical applications. This paper presents the results of an experimental investigation on the crack extension inside epoxy-alumina. Specimens with 5 vol.%, 10 vol.%, …, 25 vol.% fillers fractions were fabricated. Three-point bending on single-edge not...

Full description

Saved in:
Bibliographic Details
Published inJOM (1989) Vol. 73; no. 8; pp. 2452 - 2459
Main Authors Tang, Yichun, Su, Kangning, Man, Ruyi, Hillman, Michael C., Du, Jing
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Polymer-ceramic composites are widely used in biomedical applications. This paper presents the results of an experimental investigation on the crack extension inside epoxy-alumina. Specimens with 5 vol.%, 10 vol.%, …, 25 vol.% fillers fractions were fabricated. Three-point bending on single-edge notched bend specimens were performed using conventional mechanical tester and in situ mechanical tester coupled with micro-CT, respectively. Fracture toughness was measured to be 2.10–2.51 MPa m , and it decreased with increasing filler fraction. When cracks were shorter than 0.88 mm, crack resistance for 5 and 25 vol.% epoxy-alumina was similar. Beyond 0.88 mm, 25 vol.% epoxy-alumina exhibited no crack resistance, whereas stress intensity factor kept increasing in 5 vol.% epoxy-alumina. The matrix-particle interfaces were the weakest link, where cracks often initiated from. Crack bridging by uncracked ligament and crack deflection were commonly observed toughening mechanisms. To design robust epoxy-alumina composites, increasing matrix-particle interface strength is recommended for future work.
ISSN:1047-4838
1543-1851
DOI:10.1007/s11837-021-04714-x