Simple maximum principle preserving time-stepping methods for time-fractional Allen-Cahn equation
Two fast L1 time-stepping methods, including the backward Euler and stabilized semi-implicit schemes, are suggested for the time-fractional Allen-Cahn equation with Caputo’s derivative. The time mesh is refined near the initial time to resolve the intrinsically initial singularity of solution, and u...
Saved in:
Published in | Advances in computational mathematics Vol. 46; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Two fast L1 time-stepping methods, including the backward Euler and stabilized semi-implicit schemes, are suggested for the time-fractional Allen-Cahn equation with Caputo’s derivative. The time mesh is refined near the initial time to resolve the intrinsically initial singularity of solution, and unequal time steps are always incorporated into our approaches so that a adaptive time-stepping strategy can be used in long-time simulations. It is shown that the proposed schemes using the fast L1 formula preserve the discrete maximum principle. Sharp error estimates reflecting the time regularity of solution are established by applying the discrete fractional Grönwall inequality and global consistency analysis. Numerical experiments are presented to show the effectiveness of our methods and to confirm our analysis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1019-7168 1572-9044 |
DOI: | 10.1007/s10444-020-09782-2 |