PyGAD: an intuitive genetic algorithm Python library
This paper introduces PyGAD, an open-source easy-to-use Python library for building the genetic algorithm (GA) and solving multi-objective optimization problems. PyGAD is designed as a general-purpose optimization library with the support of a wide range of parameters to give the user control over i...
Saved in:
Published in | Multimedia tools and applications Vol. 83; no. 20; pp. 58029 - 58042 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper introduces PyGAD, an open-source easy-to-use Python library for building the genetic algorithm (GA) and solving multi-objective optimization problems. PyGAD is designed as a general-purpose optimization library with the support of a wide range of parameters to give the user control over its life cycle. This includes, but not limited to, the population, fitness function, gene value space, gene data type, parent selection, crossover, and mutation. Its usage consists of 3 main steps: build the fitness function, create an instance of the pygad.GA class, and call the pygad.GA.run() method. The library supports training deep learning models created either with PyGAD itself or with frameworks such as Keras and PyTorch. Given its stable state, PyGAD is also in active development to respond to the user’s requested features and enhancements received on GitHub. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1573-7721 1380-7501 1573-7721 |
DOI: | 10.1007/s11042-023-17167-y |