Forecasting wholesale prices of yellow corn through the Gaussian process regression

For market players and policy officials, commodity price forecasts are crucial problems that are challenging to address due to the complexity of price time series. Given its strategic importance, corn crops are hardly an exception. The current paper evaluates the forecasting issue for China’s weekly...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 36; no. 15; pp. 8693 - 8710
Main Authors Jin, Bingzi, Xu, Xiaojie
Format Journal Article
LanguageEnglish
Published London Springer London 01.05.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For market players and policy officials, commodity price forecasts are crucial problems that are challenging to address due to the complexity of price time series. Given its strategic importance, corn crops are hardly an exception. The current paper evaluates the forecasting issue for China’s weekly wholesale price index for yellow corn from January 1, 2010 to January 10, 2020. We develop a Gaussian process regression model using cross validation and Bayesian optimizations over various kernels and basis functions that could effectively handle this sophisticated commodity price forecast problem. The model provides precise out-of-sample forecasts from January 4, 2019 to January 10, 2020, with a relative root mean square error, root mean square error, and mean absolute error of 1.245%, 1.605, and 0.936, respectively. The models developed here might be used by market players for market evaluations and decision-making as well as by policymakers for policy creation and execution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-024-09531-2