Complexity of a projected Newton-CG method for optimization with bounds
This paper describes a method for solving smooth nonconvex minimization problems subject to bound constraints with good worst-case complexity guarantees and practical performance. The method contains elements of two existing methods: the classical gradient projection approach for bound-constrained o...
Saved in:
Published in | Mathematical programming Vol. 207; no. 1-2; pp. 107 - 144 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper describes a method for solving smooth nonconvex minimization problems subject to bound constraints with good worst-case complexity guarantees and practical performance. The method contains elements of two existing methods: the classical gradient projection approach for bound-constrained optimization and a recently proposed Newton-conjugate gradient algorithm for unconstrained nonconvex optimization. Using a new definition of approximate second-order optimality parametrized by some tolerance
ϵ
(which is compared with related definitions from previous works), we derive complexity bounds in terms of
ϵ
for both the number of iterations required and the total amount of computation. The latter is measured by the number of gradient evaluations or Hessian-vector products. We also describe illustrative computational results on several test problems from low-rank matrix optimization. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-023-02000-z |