Regularization Parameter Selection for the Low Rank Matrix Recovery

A popular approach to recover low rank matrices is the nuclear norm regularized minimization (NRM) for which the selection of the regularization parameter is inevitable. In this paper, we build up a novel rule to choose the regularization parameter for NRM, with the help of the duality theory. Our r...

Full description

Saved in:
Bibliographic Details
Published inJournal of optimization theory and applications Vol. 189; no. 3; pp. 772 - 792
Main Authors Shang, Pan, Kong, Lingchen
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A popular approach to recover low rank matrices is the nuclear norm regularized minimization (NRM) for which the selection of the regularization parameter is inevitable. In this paper, we build up a novel rule to choose the regularization parameter for NRM, with the help of the duality theory. Our result provides a safe set for the regularization parameter when the rank of the solution has an upper bound. Furthermore, we apply this idea to NRM with quadratic and Huber functions, and establish simple formulae for the regularization parameters. Finally, we report numerical results on some signal shapes by embedding our rule into the cross validation, which state that our rule can reduce the computational time for the selection of the regularization parameter. To the best of our knowledge, this is the first attempt to select the regularization parameter for the low rank matrix recovery.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-021-01852-9