Total removal of Hg (II) from wastewater using magnetic nanoparticles coated with nanometric Ag and functionalized with sodium 2-mercaptoethane sulfonate

Divalent mercury (Hg (II)) is the predominant mercury species in aquatic environments. Hg (II) combines easily with human enzymes, thus causing acute diseases, even at very low concentrations. Among existing procedures to remove Hg (II) from water, adsorption is widely used, achieving high removal e...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental chemistry letters Vol. 18; no. 3; pp. 975 - 981
Main Authors Vicente-Martínez, Y., Caravaca, M., Soto-Meca, A.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Divalent mercury (Hg (II)) is the predominant mercury species in aquatic environments. Hg (II) combines easily with human enzymes, thus causing acute diseases, even at very low concentrations. Among existing procedures to remove Hg (II) from water, adsorption is widely used, achieving high removal efficiencies. However, most actual adsorption techniques require high temperatures, long times or tedious procedures. Here we present a novel, simple and fast method to remove Hg (II) from wastewater by using magnetic-core nanoparticles coated with metallic silver and functionalized with sodium 2-mercaptoethane sulfonate. This adsorbent was characterized by field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Brunauer–Emmett–Teller analysis, which showed a contact surface area of the adsorbent equal to 116.476 m 2 /g. The equilibrium isotherm is characterized by the Langmuir model. Results show that 100% adsorption efficiency is achieved in 30 seconds of contact time, at pH 6.2 and room temperature, employing a low dose of adsorbent. The adsorbent can be recovered and recycled, keeping 100% adsorption efficiency for two additional cycles. The presence of other ions commonly found in aqueous media does not interfere with Hg (II) adsorption.
ISSN:1610-3653
1610-3661
DOI:10.1007/s10311-020-00987-x