High-Precision Digital Image Correlation for Investigation of Fluid-Structure Interactions in a Shock Tube
Background: Structural response measurements are challenging in aerodynamic testing environments due to high-speed requirements, facility vibrations, and the desire for non-intrusive measurements. Objective: This study uses stereo digital image correlation (DIC) to investigate the response of a join...
Saved in:
Published in | Experimental mechanics Vol. 60; no. 8; pp. 1119 - 1133 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background: Structural response measurements are challenging in aerodynamic testing environments due to high-speed requirements, facility vibrations, and the desire for non-intrusive measurements. Objective: This study uses stereo digital image correlation (DIC) to investigate the response of a jointed beam under aerodynamic loading in a shock tube. Methods: The incident shock subjects the beam to an impulsive frontal load followed by periodic transverse loading from vortex shedding. Several considerations necessary to realize high-precision are addressed: first, a hybrid stereo camera calibration accounted for tangential distortions when imaging through thick windows. Second, a measurement bias from Xenon flash-lamp light sources was identified and removed using laser illumination. Third, facility motion was mitigated by vibration isolation and appropriate signal filtering. Finally, aero-optical distortions from turbulence were removed using a low-order reconstruction. Results: The resulting displacement data has a noise floor of approximately ± 1 μm at 20 kHz sampling rate. The reduction of primary noise sources allows a transient structural response on the order of 10–40 μm to be quantified. The highest vibrations occurred when the vortex shedding frequency matched the beam’s natural frequency. Conclusion: the noise reduction techniques described allow for structural measurements requiring high-precision, non-intrusive displacement data to be performed in aerodynamic environments. |
---|---|
AbstractList | Background: Structural response measurements are challenging in aerodynamic testing environments due to high-speed requirements, facility vibrations, and the desire for non-intrusive measurements. Objective: This study uses stereo digital image correlation (DIC) to investigate the response of a jointed beam under aerodynamic loading in a shock tube. Methods: The incident shock subjects the beam to an impulsive frontal load followed by periodic transverse loading from vortex shedding. Several considerations necessary to realize high-precision are addressed: first, a hybrid stereo camera calibration accounted for tangential distortions when imaging through thick windows. Second, a measurement bias from Xenon flash-lamp light sources was identified and removed using laser illumination. Third, facility motion was mitigated by vibration isolation and appropriate signal filtering. Finally, aero-optical distortions from turbulence were removed using a low-order reconstruction. Results: The resulting displacement data has a noise floor of approximately ± 1 μm at 20 kHz sampling rate. The reduction of primary noise sources allows a transient structural response on the order of 10–40 μm to be quantified. The highest vibrations occurred when the vortex shedding frequency matched the beam’s natural frequency. Conclusion: the noise reduction techniques described allow for structural measurements requiring high-precision, non-intrusive displacement data to be performed in aerodynamic environments. Background: Structural response measurements are challenging in aerodynamic testing environments due to high-speed requirements, facility vibrations, and the desire for non-intrusive measurements. Objective: This study uses stereo digital image correlation (DIC) to investigate the response of a jointed beam under aerodynamic loading in a shock tube. Methods: The incident shock subjects the beam to an impulsive frontal load followed by periodic transverse loading from vortex shedding. Several considerations necessary to realize high-precision are addressed: first, a hybrid stereo camera calibration accounted for tangential distortions when imaging through thick windows. Second, a measurement bias from Xenon flash-lamp light sources was identified and removed using laser illumination. Third, facility motion was mitigated by vibration isolation and appropriate signal filtering. Finally, aero-optical distortions from turbulence were removed using a low-order reconstruction. Results: The resulting displacement data has a noise floor of approximately ± 1 μm at 20 kHz sampling rate. The reduction of primary noise sources allows a transient structural response on the order of 10–40 μm to be quantified. The highest vibrations occurred when the vortex shedding frequency matched the beam’s natural frequency. Conclusion: the noise reduction techniques described allow for structural measurements requiring high-precision, non-intrusive displacement data to be performed in aerodynamic environments. |
Author | Wagner, J. L. Lynch, K. P. Jones, E. M. C. |
Author_xml | – sequence: 1 givenname: K. P. orcidid: 0000-0003-3528-7542 surname: Lynch fullname: Lynch, K. P. email: klynch@sandia.gov organization: Sandia National Laboratories – sequence: 2 givenname: E. M. C. surname: Jones fullname: Jones, E. M. C. organization: Sandia National Laboratories – sequence: 3 givenname: J. L. surname: Wagner fullname: Wagner, J. L. organization: Sandia National Laboratories |
BookMark | eNp9kF1LwzAUhoNMcE7_gFcBr6P5atNdynRuMFDYvA5JmnaZXTOTVvDfm1lB8GIXIZDzPjnnPJdg1PrWAnBD8B3BWNxHQhjHCNN0cE4wKs7AmAhOEBV5NgJjjAlHvMjIBbiMcYcTxAQdg93C1Vv0Gqxx0fkWPrradaqBy72qLZz5EGyjumOl8gEu208bO1cPL76C86Z3JVp3oTddH2wKdDYocyxH6Fqo4HrrzTvc9NpegfNKNdFe_94T8DZ_2swWaPXyvJw9rJBhZNohmzFDtGVFlXNKciO0KQ01hulMqNyUWitqhKB6WjHFubK4pNOp0FxbUlrB2ATcDv8egv_o07xy5_vQppaS8gwzkud5llJ0SJngYwy2kofg9ip8SYLl0akcnMrkVP44lUWCin-QSbaO23ZBueY0ygY0pj5tbcPfVCeob4Nwjr8 |
CitedBy_id | crossref_primary_10_2514_1_J059156 crossref_primary_10_1007_s40799_024_00707_y crossref_primary_10_1016_j_flowmeasinst_2024_102717 crossref_primary_10_1016_j_tws_2024_112589 crossref_primary_10_1364_AO_443878 crossref_primary_10_1007_s11340_023_01029_7 crossref_primary_10_1007_s40799_021_00508_7 crossref_primary_10_1007_s11340_023_00949_8 |
Cites_doi | 10.1016/0022-460X(71)90594-3 10.1109/9.376053 10.1115/1.1989354 10.1115/1.3625199 10.1016/j.jsv.2018.11.035 10.1007/s00348-012-1272-x 10.1051/eucass/201305285 10.1016/j.jfluidstructs.2004.02.005 10.2514/1.J054688 10.1016/j.jsv.2018.10.022 10.1016/j.ymssp.2016.04.013 10.2514/3.5680 10.2514/1.J056060 10.2514/2.1080 10.2514/1.J056032 10.2514/6.2018-2038 10.2514/6.2018-3869 10.1007/s00348-018-2558-4 10.2514/6.2019-3654 10.2514/6.2016-1088 |
ContentType | Journal Article |
Copyright | Sandia National Laboratories 2020 Sandia National Laboratories 2020. |
Copyright_xml | – notice: Sandia National Laboratories 2020 – notice: Sandia National Laboratories 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11340-020-00610-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1741-2765 |
EndPage | 1133 |
ExternalDocumentID | 10_1007_s11340_020_00610_8 |
GrantInformation_xml | – fundername: Sandia National Laboratories funderid: http://dx.doi.org/10.13039/100006234 |
GroupedDBID | -5B -5G -BR -EM -XX -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDEX ABDPE ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAGR AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 E.L EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IAO IEA IGS IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X J-C J0Z JBSCW JZLTJ KDC KOV LAS LLZTM M4V M4Y MA- N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9P PF0 PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SC5 SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TN5 TSG TSK TSV TUC TUS U2A UCJ UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XSW YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c319t-e53c1be38f64216c7bcdc2cc3b57a6cdbba2c772b9f3a44ae0d2997b4be1de733 |
IEDL.DBID | U2A |
ISSN | 0014-4851 |
IngestDate | Fri Jul 25 11:12:39 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Tue Jul 01 04:19:58 EDT 2025 Fri Feb 21 02:36:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Digital image correlation Shock tube Fluid structure interaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c319t-e53c1be38f64216c7bcdc2cc3b57a6cdbba2c772b9f3a44ae0d2997b4be1de733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3528-7542 |
PQID | 2450316665 |
PQPubID | 2044465 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2450316665 crossref_primary_10_1007_s11340_020_00610_8 crossref_citationtrail_10_1007_s11340_020_00610_8 springer_journals_10_1007_s11340_020_00610_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal Integrating Experimental Methods with the Mechanical Behavior of Materials and Structures |
PublicationTitle | Experimental mechanics |
PublicationTitleAbbrev | Exp Mech |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Dowell (CR11) 1970; 8 CR19 Segalman (CR12) 2005; 72 Sarpkaya (CR1) 2004; 19 Jones, Iadicola (CR25) 2018 CR16 CR15 Willems, Gulhan, Esser (CR7) 2013 CR10 Spottswood, Beberniss, Eason, Perez, Donbar, Ehrhardt, Riley (CR17) 2019; 443 Blackman, Clark, McNulty, Wilby (CR3) 1966 Riley, Perez, Bartram, Spottswood, Smarslok, Beberniss (CR18) 2019; 441 De Wit, Olsson, Astrom, Lischinsky (CR14) 1995; 40 Casper, Beresh, Henfling, Spillers, Hunter, Spitzer (CR4) 2018 Wagner, Beresh, Kearney, Trott, Casteaneda, Pruett, Baer (CR20) 2012; 52 Iwan (CR13) 1966; 33 CR5 Wagner, Casper, Beresh, Hunter, Spillers, Henfling (CR2) 2016; 54 Perez, Bartram, Beberniss, Wiebe, Spottswood (CR8) 2017; 86 CR24 CR23 CR22 Maestrello, Linden (CR6) 1971; 16 Taira, Brunton, Dawson, Rowley, Colonius, McKeon, Schmidt, Gordeyev, Theofilis, Ukeiley (CR26) 2017; 55 Mirels, Braun (CR21) 1957 Maestrello (CR9) 2000; 38 L Maestrello (610_CR6) 1971; 16 S Willems (610_CR7) 2013 610_CR5 H Mirels (610_CR21) 1957 610_CR24 EH Dowell (610_CR11) 1970; 8 610_CR23 610_CR22 L Maestrello (610_CR9) 2000; 38 WD Iwan (610_CR13) 1966; 33 610_CR19 K Taira (610_CR26) 2017; 55 JL Wagner (610_CR20) 2012; 52 R Perez (610_CR8) 2017; 86 T Sarpkaya (610_CR1) 2004; 19 SM Spottswood (610_CR17) 2019; 443 KM Casper (610_CR4) 2018 610_CR10 610_CR16 610_CR15 DR Blackman (610_CR3) 1966 DJ Segalman (610_CR12) 2005; 72 CC De Wit (610_CR14) 1995; 40 ZB Riley (610_CR18) 2019; 441 JL Wagner (610_CR2) 2016; 54 EMC Jones (610_CR25) 2018 |
References_xml | – year: 1966 ident: CR3 publication-title: "a review of flight and wind tunnel measurements of boundary layer pressure fluctuations and induced structural response," NASA-CR-626 – ident: CR22 – volume: 16 start-page: 385 issue: 3 year: 1971 end-page: 391 ident: CR6 article-title: Measurements of the response of a panel excited by shock boundary-layer interaction publication-title: J Sound Vib doi: 10.1016/0022-460X(71)90594-3 – volume: 40 start-page: 419 year: 1995 end-page: 425 ident: CR14 article-title: A new model for control of systems with friction publication-title: IEEE Trans Autom Control doi: 10.1109/9.376053 – volume: 72 start-page: 752 year: 2005 end-page: 760 ident: CR12 article-title: A four-parameter Iwan model for lap-type joints publication-title: J. Appl. Mech. doi: 10.1115/1.1989354 – volume: 33 start-page: 893 year: 1966 end-page: 900 ident: CR13 article-title: A distributed-element model for hysteresis and its steady-state dynamic response publication-title: J Appl Mech doi: 10.1115/1.3625199 – ident: CR16 – volume: 443 start-page: 74 year: 2019 end-page: 89 ident: CR17 article-title: Exploring the response of a thin, flexible panel to shock-turbulent boundary-layer interactions publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.11.035 – volume: 52 start-page: 1507 issue: 6 year: 2012 end-page: 1517 ident: CR20 article-title: A multiphase shock tube for shock wave interaction with dense particle fields publication-title: Exp Fluids doi: 10.1007/s00348-012-1272-x – ident: CR10 – start-page: 285 year: 2013 end-page: 308 ident: CR7 article-title: Shock induced fluid-structure interaction on a flexible wall in supersonic turbulent flow publication-title: Progress in Flight Physics doi: 10.1051/eucass/201305285 – volume: 19 start-page: 389 issue: 4 year: 2004 end-page: 447 ident: CR1 article-title: A critical review of the intrinsic nature of vortex-induced vibrations publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2004.02.005 – volume: 54 start-page: 2351 issue: 8 year: 2016 end-page: 2360 ident: CR2 article-title: Response of a store with tunable natural frequencies in compressible cavity flow publication-title: AIAA J doi: 10.2514/1.J054688 – ident: CR23 – ident: CR19 – start-page: 2018 year: 2018 end-page: 1825 ident: CR4 publication-title: "hypersonic fluid-structure interactions on a slender cone," AIAA – ident: CR15 – volume: 441 start-page: 96 year: 2019 end-page: 105 ident: CR18 article-title: Aeothermoelastic experimental design for the AEDC/VKF tunnel C: challenges associated with measuring the response of flexible panels in high-temperature, high-speed wind tunnels publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.10.022 – volume: 86 start-page: 49 year: 2017 end-page: 65 ident: CR8 article-title: Calibration of aero-structural reduced order models using full-field experimental measurements publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.04.013 – volume: 8 start-page: 385 issue: 3 year: 1970 end-page: 399 ident: CR11 article-title: Panel flutter - a review of the aeroelastic stability of plates and shells publication-title: AIAA J doi: 10.2514/3.5680 – year: 1957 ident: CR21 publication-title: Nonuniformities in shock-tube flow due to unsteady-boundary-layer action – ident: CR5 – volume: 55 start-page: 4013 issue: 12 year: 2017 end-page: 4041 ident: CR26 article-title: Modal analysis of fluid flows: an overview publication-title: AIAA J doi: 10.2514/1.J056060 – year: 2018 ident: CR25 publication-title: A good practice guide for digital image correlation – ident: CR24 – volume: 38 start-page: 972 issue: 6 year: 2000 end-page: 977 ident: CR9 article-title: Control of shock loading from a jet in a flexible structure's presence publication-title: AIAA J doi: 10.2514/2.1080 – volume: 38 start-page: 972 issue: 6 year: 2000 ident: 610_CR9 publication-title: AIAA J doi: 10.2514/2.1080 – volume: 441 start-page: 96 year: 2019 ident: 610_CR18 publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.10.022 – ident: 610_CR10 doi: 10.2514/1.J056032 – volume: 40 start-page: 419 year: 1995 ident: 610_CR14 publication-title: IEEE Trans Autom Control doi: 10.1109/9.376053 – start-page: 2018 volume-title: "hypersonic fluid-structure interactions on a slender cone," AIAA year: 2018 ident: 610_CR4 – volume-title: "a review of flight and wind tunnel measurements of boundary layer pressure fluctuations and induced structural response," NASA-CR-626 year: 1966 ident: 610_CR3 – volume-title: Nonuniformities in shock-tube flow due to unsteady-boundary-layer action year: 1957 ident: 610_CR21 – ident: 610_CR23 – volume: 55 start-page: 4013 issue: 12 year: 2017 ident: 610_CR26 publication-title: AIAA J doi: 10.2514/1.J056060 – volume: 443 start-page: 74 year: 2019 ident: 610_CR17 publication-title: J Sound Vib doi: 10.1016/j.jsv.2018.11.035 – volume: 54 start-page: 2351 issue: 8 year: 2016 ident: 610_CR2 publication-title: AIAA J doi: 10.2514/1.J054688 – volume: 52 start-page: 1507 issue: 6 year: 2012 ident: 610_CR20 publication-title: Exp Fluids doi: 10.1007/s00348-012-1272-x – volume: 33 start-page: 893 year: 1966 ident: 610_CR13 publication-title: J Appl Mech doi: 10.1115/1.3625199 – start-page: 285 volume-title: Progress in Flight Physics year: 2013 ident: 610_CR7 doi: 10.1051/eucass/201305285 – ident: 610_CR16 doi: 10.2514/6.2018-2038 – ident: 610_CR15 – ident: 610_CR19 doi: 10.2514/6.2018-3869 – volume: 19 start-page: 389 issue: 4 year: 2004 ident: 610_CR1 publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2004.02.005 – ident: 610_CR22 doi: 10.1007/s00348-018-2558-4 – ident: 610_CR24 doi: 10.2514/6.2019-3654 – volume-title: A good practice guide for digital image correlation year: 2018 ident: 610_CR25 – volume: 8 start-page: 385 issue: 3 year: 1970 ident: 610_CR11 publication-title: AIAA J doi: 10.2514/3.5680 – volume: 16 start-page: 385 issue: 3 year: 1971 ident: 610_CR6 publication-title: J Sound Vib doi: 10.1016/0022-460X(71)90594-3 – volume: 86 start-page: 49 year: 2017 ident: 610_CR8 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.04.013 – ident: 610_CR5 doi: 10.2514/6.2016-1088 – volume: 72 start-page: 752 year: 2005 ident: 610_CR12 publication-title: J. Appl. Mech. doi: 10.1115/1.1989354 |
SSID | ssj0007372 |
Score | 2.3261983 |
Snippet | Background: Structural response measurements are challenging in aerodynamic testing environments due to high-speed requirements, facility vibrations, and the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1119 |
SubjectTerms | Aerodynamic loads Aerodynamics Biomedical Engineering and Bioengineering Characterization and Evaluation of Materials Control Correlation analysis Digital imaging Dynamical Systems Engineering Flash lamps Fluid dynamics Fluid flow Fluid-structure interaction Image reconstruction Lasers Light sources Noise Noise reduction Optical communication Optical Devices Optical distortion Optics Photonics Research Paper Resonant frequencies Solid Mechanics Transverse loads Vibration Vortex shedding Xenon |
Title | High-Precision Digital Image Correlation for Investigation of Fluid-Structure Interactions in a Shock Tube |
URI | https://link.springer.com/article/10.1007/s11340-020-00610-8 https://www.proquest.com/docview/2450316665 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oXPRgfEYUyR686Sa03e2WI-EhPmMCJHhq9lXFYDEC_9_ZbQto1MRTk3bbw8zufN92v5lB6BwYB4A0bFOZ8DmhItEkCup1onQEaNGQLNRObfEQ9ob0ZsRGeVLYrFC7F0eSLlKvkt28wEoRfZsJDaBPok1UZrB3t0Kuod9cxl_beCWLv5RQIBR5qszP3_gKRyuO-e1Y1KFNdxft5DQRNzO_7qENk-6j7bXigQfo1Uo0yONH3iQHt8fPtgEIvn6DEIFbtutGpnPDwEvxWj0NuDNNcHeyGGvSd-VjFx8Gu1-DWZbDDI9TLHD_BWIlHiykOUTDbmfQ6pG8cwJRsKTmxLBAedIEUWLzWEPFpdLKVyqQjItQaSmFr4BXy0YSCEqFqWuAJS6pNJ42PAiOUCmdpuYYYc6VlAZolFGMKk8LHVGjPW7Rj0aJqSCvMGCs8rLitrvFJF4VRLZGj8HosTN6HFXQxfKd96yoxp-jq4Vf4nyBzWKfMghHsPdiFXRZ-Gr1-Pevnfxv-Cna8u10cfK9KiqBV8wZ0JC5rKFys31_17fXq6fbTs3Nwk-TZNXm |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHtSD8RlR1D14001od9suR4ISUCQmQMKt6T6qGCyGx_93tg9AoyZe291tMjM737fdeQBcI-NAkMZjqhe5AeVRrKlg1SpVWiBa1KTn6zTaouu3Bvxh6A3zpLBZEe1eXEmmnnqV7OYwG4ro2kxoBH0qNmELvyOsLQ_c-tL_2sYrmf_llCOhyFNlfl7jKxytOOa3a9EUbZr7sJfTRFLP9HoAGyY5hN214oFH8GZDNOjzNG-SQ-5GL7YBCGm_o4sgDdt1I4tzI8hLyVo9DXwyiUlzvBhp2kvLxy6mhqS_BrMshxkZJSQivVf0laS_kOYYBs37fqNF884JVOGWmlPjMeVIw0Rs81h9FUillasUk14Q-UpLGbkKebWsxSziPDJVjbAUSC6No03A2AmUkkliToEEgZLSII0yyuPK0ZEW3GgnsOjHRWzK4BQCDFVeVtx2txiHq4LIVughCj1MhR6KMtws53xkRTX-HF0p9BLmG2wWutxDd4RnL68Mt4WuVq9_X-3sf8OvYLvVf-qEnXb38Rx2XGs6aShfBUqoIXOBlGQuL1ML_ARlyNWx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFG4UE6MPxmtEUfvgmzawraXjkYCLqCEkQMLbsl6mGByEy__3tNsYGjXxdev6cE57ztf1fN9B6BYQByRpOKayyOWERrEivlerEal8yBYNwerKVlt0649D-jRiow0Wv612z68kU06DUWlKltWZiqsF8c3xTFmia1jRAACIv412qGEDw4oeus11LDZNWNJYTAkFcJHRZn6e42tqKvDmtytSm3mCQ3SQQUbcTH18hLZ0coz2N4QET9C7KdcgvXnWMAe3x6-mGQjufEC4wC3TgSOtecOAUfGGtgY8mcY4mKzGivStlOxqrrH9TZgyHhZ4nOAI998gbuLBSuhTNAweBq1HknVRIBK215Jo5klHaM-PDae1LrmQSrpSeoLxqC6VEJErAWOLRuxFlEa6piBFcUGFdpTmnneGSsk00ecIcy6F0ACptGRUOipSPtXK4SYTUj_WZeTkBgxlJjFuOl1MwkIc2Rg9BKOH1uihX0Z3629mqcDGn6MruV_CbLMtQpcyCE1wDmNldJ_7qnj9-2wX_xt-g3Z77SB86XSfL9Gea1aOreqroBI4SF8BOlmKa7sAPwHRgdnk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Precision+Digital+Image+Correlation+for+Investigation+of+Fluid-Structure+Interactions+in+a+Shock+Tube&rft.jtitle=Experimental+mechanics&rft.au=Lynch%2C+K+P&rft.au=Jones%2C+E+M&rft.au=Wagner%2C+J+L&rft.date=2020-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0014-4851&rft.eissn=1741-2765&rft.volume=60&rft.issue=8&rft.spage=1119&rft.epage=1133&rft_id=info:doi/10.1007%2Fs11340-020-00610-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4851&client=summon |