High-Precision Digital Image Correlation for Investigation of Fluid-Structure Interactions in a Shock Tube

Background: Structural response measurements are challenging in aerodynamic testing environments due to high-speed requirements, facility vibrations, and the desire for non-intrusive measurements. Objective: This study uses stereo digital image correlation (DIC) to investigate the response of a join...

Full description

Saved in:
Bibliographic Details
Published inExperimental mechanics Vol. 60; no. 8; pp. 1119 - 1133
Main Authors Lynch, K. P., Jones, E. M. C., Wagner, J. L.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background: Structural response measurements are challenging in aerodynamic testing environments due to high-speed requirements, facility vibrations, and the desire for non-intrusive measurements. Objective: This study uses stereo digital image correlation (DIC) to investigate the response of a jointed beam under aerodynamic loading in a shock tube. Methods: The incident shock subjects the beam to an impulsive frontal load followed by periodic transverse loading from vortex shedding. Several considerations necessary to realize high-precision are addressed: first, a hybrid stereo camera calibration accounted for tangential distortions when imaging through thick windows. Second, a measurement bias from Xenon flash-lamp light sources was identified and removed using laser illumination. Third, facility motion was mitigated by vibration isolation and appropriate signal filtering. Finally, aero-optical distortions from turbulence were removed using a low-order reconstruction. Results: The resulting displacement data has a noise floor of approximately ± 1 μm at 20 kHz sampling rate. The reduction of primary noise sources allows a transient structural response on the order of 10–40 μm to be quantified. The highest vibrations occurred when the vortex shedding frequency matched the beam’s natural frequency. Conclusion: the noise reduction techniques described allow for structural measurements requiring high-precision, non-intrusive displacement data to be performed in aerodynamic environments.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0014-4851
1741-2765
DOI:10.1007/s11340-020-00610-8